// This file is part of Eigen, a lightweight C++ template library
// for linear algebra. Eigen itself is part of the KDE project.
//
// Copyright (C) 2009 Mark Borgerding mark a borgerding net
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see .
#include "main.h"
#include
template
std::complex RandomCpx() { return std::complex( (T)(rand()/(T)RAND_MAX - .5), (T)(rand()/(T)RAND_MAX - .5) ); }
using namespace std;
using namespace Eigen;
float norm(float x) {return x*x;}
double norm(double x) {return x*x;}
long double norm(long double x) {return x*x;}
template < typename T>
complex promote(complex x) { return complex(x.real(),x.imag()); }
complex promote(float x) { return complex( x); }
complex promote(double x) { return complex( x); }
complex promote(long double x) { return complex( x); }
template
long double fft_rmse( const VT1 & fftbuf,const VT2 & timebuf)
{
long double totalpower=0;
long double difpower=0;
long double pi = acos((long double)-1 );
for (size_t k0=0;k0<(size_t)fftbuf.size();++k0) {
complex acc = 0;
long double phinc = -2.*k0* pi / timebuf.size();
for (size_t k1=0;k1<(size_t)timebuf.size();++k1) {
acc += promote( timebuf[k1] ) * exp( complex(0,k1*phinc) );
}
totalpower += norm(acc);
complex x = promote(fftbuf[k0]);
complex dif = acc - x;
difpower += norm(dif);
//cerr << k0 << "\t" << acc << "\t" << x << "\t" << sqrt(norm(dif)) << endl;
}
cerr << "rmse:" << sqrt(difpower/totalpower) << endl;
return sqrt(difpower/totalpower);
}
template
long double dif_rmse( const VT1 buf1,const VT2 buf2)
{
long double totalpower=0;
long double difpower=0;
size_t n = min( buf1.size(),buf2.size() );
for (size_t k=0;k struct VectorType;
template struct VectorType
{
typedef vector type;
};
template struct VectorType
{
typedef Matrix type;
};
template
void test_scalar_generic(int nfft)
{
typedef typename FFT::Complex Complex;
typedef typename FFT::Scalar Scalar;
typedef typename VectorType::type ScalarVector;
typedef typename VectorType::type ComplexVector;
FFT fft;
ScalarVector tbuf(nfft);
ComplexVector freqBuf;
for (int k=0;k>1)+1) );
VERIFY( fft_rmse(freqBuf,tbuf) < test_precision() );// gross check
fft.ClearFlag(fft.HalfSpectrum );
fft.fwd( freqBuf,tbuf);
VERIFY( (size_t)freqBuf.size() == (size_t)nfft);
VERIFY( fft_rmse(freqBuf,tbuf) < test_precision() );// gross check
if (nfft&1)
return; // odd FFTs get the wrong size inverse FFT
ScalarVector tbuf2;
fft.inv( tbuf2 , freqBuf);
VERIFY( dif_rmse(tbuf,tbuf2) < test_precision() );// gross check
// verify that the Unscaled flag takes effect
ScalarVector tbuf3;
fft.SetFlag(fft.Unscaled);
fft.inv( tbuf3 , freqBuf);
for (int k=0;k " << (tbuf3[i] - tbuf[i] ) << endl;
VERIFY( dif_rmse(tbuf,tbuf3) < test_precision() );// gross check
// verify that ClearFlag works
fft.ClearFlag(fft.Unscaled);
fft.inv( tbuf2 , freqBuf);
VERIFY( dif_rmse(tbuf,tbuf2) < test_precision() );// gross check
}
template
void test_scalar(int nfft)
{
test_scalar_generic(nfft);
//test_scalar_generic(nfft);
}
template
void test_complex_generic(int nfft)
{
typedef typename FFT::Complex Complex;
typedef typename VectorType::type ComplexVector;
FFT fft;
ComplexVector inbuf(nfft);
ComplexVector outbuf;
ComplexVector buf3;
for (int k=0;k() );// gross check
fft.inv( buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < test_precision() );// gross check
// verify that the Unscaled flag takes effect
ComplexVector buf4;
fft.SetFlag(fft.Unscaled);
fft.inv( buf4 , outbuf);
for (int k=0;k() );// gross check
// verify that ClearFlag works
fft.ClearFlag(fft.Unscaled);
fft.inv( buf3 , outbuf);
VERIFY( dif_rmse(inbuf,buf3) < test_precision() );// gross check
}
template
void test_complex(int nfft)
{
test_complex_generic(nfft);
test_complex_generic(nfft);
}
/*
template
void test_complex2d()
{
typedef typename Eigen::FFT::Complex Complex;
FFT fft;
Eigen::Matrix src,src2,dst,dst2;
src = Eigen::Matrix::Random();
//src = Eigen::Matrix::Identity();
for (int k=0;k tmpOut;
fft.fwd( tmpOut,src.col(k) );
dst2.col(k) = tmpOut;
}
for (int k=0;k tmpOut;
fft.fwd( tmpOut, dst2.row(k) );
dst2.row(k) = tmpOut;
}
fft.fwd2(dst.data(),src.data(),ncols,nrows);
fft.inv2(src2.data(),dst.data(),ncols,nrows);
VERIFY( (src-src2).norm() < test_precision() );
VERIFY( (dst-dst2).norm() < test_precision() );
}
*/
void test_return_by_value(int len)
{
VectorXf in;
VectorXf in1;
in.setRandom( len );
VectorXcf out1,out2;
FFT fft;
fft.SetFlag(fft.HalfSpectrum );
fft.fwd(out1,in);
out2 = fft.fwd(in);
VERIFY( (out1-out2).norm() < test_precision() );
in1 = fft.inv(out1);
VERIFY( (in1-in).norm() < test_precision() );
}
void test_FFTW()
{
cout << "testing return-by-value\n";
CALL_SUBTEST( test_return_by_value(32) );
cout << "testing complex\n";
//CALL_SUBTEST( ( test_complex2d () ) ); CALL_SUBTEST( ( test_complex2d () ) );
//CALL_SUBTEST( ( test_complex2d () ) );
CALL_SUBTEST( test_complex(32) ); CALL_SUBTEST( test_complex(32) ); CALL_SUBTEST( test_complex(32) );
CALL_SUBTEST( test_complex(256) ); CALL_SUBTEST( test_complex(256) ); CALL_SUBTEST( test_complex(256) );
CALL_SUBTEST( test_complex(3*8) ); CALL_SUBTEST( test_complex(3*8) ); CALL_SUBTEST( test_complex(3*8) );
CALL_SUBTEST( test_complex(5*32) ); CALL_SUBTEST( test_complex(5*32) ); CALL_SUBTEST( test_complex(5*32) );
CALL_SUBTEST( test_complex(2*3*4) ); CALL_SUBTEST( test_complex(2*3*4) ); CALL_SUBTEST( test_complex(2*3*4) );
CALL_SUBTEST( test_complex(2*3*4*5) ); CALL_SUBTEST( test_complex(2*3*4*5) ); CALL_SUBTEST( test_complex(2*3*4*5) );
CALL_SUBTEST( test_complex(2*3*4*5*7) ); CALL_SUBTEST( test_complex(2*3*4*5*7) ); CALL_SUBTEST( test_complex(2*3*4*5*7) );
cout << "testing scalar\n";
CALL_SUBTEST( test_scalar(32) ); CALL_SUBTEST( test_scalar(32) ); CALL_SUBTEST( test_scalar(32) );
CALL_SUBTEST( test_scalar(45) ); CALL_SUBTEST( test_scalar(45) ); CALL_SUBTEST( test_scalar(45) );
CALL_SUBTEST( test_scalar(50) ); CALL_SUBTEST( test_scalar(50) ); CALL_SUBTEST( test_scalar(50) );
CALL_SUBTEST( test_scalar(256) ); CALL_SUBTEST( test_scalar(256) ); CALL_SUBTEST( test_scalar(256) );
CALL_SUBTEST( test_scalar(2*3*4*5*7) ); CALL_SUBTEST( test_scalar(2*3*4*5*7) ); CALL_SUBTEST( test_scalar(2*3*4*5*7) );
}