// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2021 The Eigen Team. // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. // The following is an example GPU test. #include "main.h" // Include the main test utilities. // Define a kernel functor. // // The kernel must be a POD type and implement operator(). struct AddKernel { // Parameters must be POD or serializable Eigen types (e.g. Matrix, // Array). The return value must be a POD or serializable value type. template EIGEN_DEVICE_FUNC Type3 operator()(const Type1& A, const Type2& B, Type3& C) const { C = A + B; // Populate output parameter. Type3 D = A + B; // Populate return value. return D; } }; // Define a sub-test that uses the kernel. template void test_add(const T& type) { const Index rows = type.rows(); const Index cols = type.cols(); // Create random inputs. const T A = T::Random(rows, cols); const T B = T::Random(rows, cols); T C; // Output parameter. // Create kernel. AddKernel add_kernel; // Run add_kernel(A, B, C) via run(...). // This will run on the GPU if using a GPU compiler, or CPU otherwise, // facilitating generic tests that can run on either. T D = run(add_kernel, A, B, C); // Check that both output parameter and return value are correctly populated. const T expected = A + B; VERIFY_IS_CWISE_EQUAL(C, expected); VERIFY_IS_CWISE_EQUAL(D, expected); // In a GPU-only test, we can verify that the CPU and GPU produce the // same results. T C_cpu, C_gpu; T D_cpu = run_on_cpu(add_kernel, A, B, C_cpu); // Runs on CPU. T D_gpu = run_on_gpu(add_kernel, A, B, C_gpu); // Runs on GPU. VERIFY_IS_CWISE_EQUAL(C_cpu, C_gpu); VERIFY_IS_CWISE_EQUAL(D_cpu, D_gpu); }; struct MultiplyKernel { template EIGEN_DEVICE_FUNC Type3 operator()(const Type1& A, const Type2& B, Type3& C) const { C = A * B; return A * B; } }; template void test_multiply(const T1& type1, const T2& type2, const T3& type3) { const T1 A = T1::Random(type1.rows(), type1.cols()); const T2 B = T2::Random(type2.rows(), type2.cols()); T3 C; MultiplyKernel multiply_kernel; // The run(...) family of functions uses a memory buffer to transfer data back // and forth to and from the device. The size of this buffer is estimated // from the size of all input parameters. If the estimated buffer size is // not sufficient for transferring outputs from device-to-host, then an // explicit buffer size needs to be specified. // 2 outputs of size (A * B). For each matrix output, the buffer will store // the number of rows, columns, and the data. size_t buffer_capacity_hint = 2 * ( // 2 output parameters 2 * sizeof(typename T3::Index) // # Rows, # Cols + A.rows() * B.cols() * sizeof(typename T3::Scalar)); // Output data T3 D = run_with_hint(buffer_capacity_hint, multiply_kernel, A, B, C); const T3 expected = A * B; VERIFY_IS_CWISE_APPROX(C, expected); VERIFY_IS_CWISE_APPROX(D, expected); T3 C_cpu, C_gpu; T3 D_cpu = run_on_cpu(multiply_kernel, A, B, C_cpu); T3 D_gpu = run_on_gpu_with_hint(buffer_capacity_hint, multiply_kernel, A, B, C_gpu); VERIFY_IS_CWISE_APPROX(C_cpu, C_gpu); VERIFY_IS_CWISE_APPROX(D_cpu, D_gpu); } // Declare the test fixture. EIGEN_DECLARE_TEST(gpu_example) { // For the number of repeats, call the desired subtests. for(int i = 0; i < g_repeat; i++) { // Call subtests with different sized/typed inputs. CALL_SUBTEST( test_add(Eigen::Vector3f()) ); CALL_SUBTEST( test_add(Eigen::Matrix3d()) ); #if !defined(EIGEN_USE_HIP) // FIXME CALL_SUBTEST( test_add(Eigen::MatrixX(10, 10)) ); #endif CALL_SUBTEST( test_add(Eigen::Array44f()) ); #if !defined(EIGEN_USE_HIP) CALL_SUBTEST( test_add(Eigen::ArrayXd(20)) ); CALL_SUBTEST( test_add(Eigen::ArrayXXi(13, 17)) ); #endif CALL_SUBTEST( test_multiply(Eigen::Matrix3d(), Eigen::Matrix3d(), Eigen::Matrix3d()) ); #if !defined(EIGEN_USE_HIP) CALL_SUBTEST( test_multiply(Eigen::MatrixX(10, 10), Eigen::MatrixX(10, 10), Eigen::MatrixX()) ); CALL_SUBTEST( test_multiply(Eigen::MatrixXf(12, 1), Eigen::MatrixXf(1, 32), Eigen::MatrixXf()) ); #endif } }