// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #ifndef EIGEN_SCALING_H #define EIGEN_SCALING_H /** \geometry_module \ingroup Geometry_Module * * \class Scaling * * \brief Represents a generic uniform scaling transformation * * \param _Scalar the scalar type, i.e., the type of the coefficients. * * This class represent a uniform scaling transformation. It is the return * type of Scaling(Scalar), and most of the time this is the only way it * is used. In particular, this class is not aimed to be used to store a scaling transformation, * but rather to make easier the constructions and updates of Transform objects. * * To represent an axis aligned scaling, use the DiagonalMatrix class. * * \sa Scaling(), class DiagonalMatrix, MatrixBase::asDiagonal(), class Translation, class Transform */ template class UniformScaling { public: /** the scalar type of the coefficients */ typedef _Scalar Scalar; protected: Scalar m_factor; public: /** Default constructor without initialization. */ UniformScaling() {} /** Constructs and initialize a uniform scaling transformation */ explicit inline UniformScaling(const Scalar& s) : m_factor(s) {} inline const Scalar& factor() const { return m_factor; } inline Scalar& factor() { return m_factor; } /** Concatenates two uniform scaling */ inline UniformScaling operator* (const UniformScaling& other) const { return UniformScaling(m_factor * other.factor()); } /** Concatenates a uniform scaling and a translation */ template inline Transform operator* (const Translation& t) const; /** Concatenates a uniform scaling and an affine transformation */ template inline Transform operator* (const Transform& t) const; /** Concatenates a uniform scaling and a linear transformation matrix */ // TODO returns an expression template inline typename ei_plain_matrix_type::type operator* (const MatrixBase& other) const { return other * m_factor; } template inline Matrix operator*(const RotationBase& r) const { return r.toRotationMatrix() * m_factor; } /** \returns the inverse scaling */ inline UniformScaling inverse() const { return UniformScaling(Scalar(1)/m_factor); } /** \returns \c *this with scalar type casted to \a NewScalarType * * Note that if \a NewScalarType is equal to the current scalar type of \c *this * then this function smartly returns a const reference to \c *this. */ template inline UniformScaling cast() const { return UniformScaling(NewScalarType(m_factor)); } /** Copy constructor with scalar type conversion */ template inline explicit UniformScaling(const UniformScaling& other) { m_factor = Scalar(other.factor()); } /** \returns \c true if \c *this is approximately equal to \a other, within the precision * determined by \a prec. * * \sa MatrixBase::isApprox() */ bool isApprox(const UniformScaling& other, typename NumTraits::Real prec = precision()) const { return ei_isApprox(m_factor, other.factor(), prec); } }; /** Concatenates a linear transformation matrix and a uniform scaling */ // NOTE this operator is defiend in MatrixBase and not as a friend function // of UniformScaling to fix an internal crash of Intel's ICC template const typename MatrixBase::ScalarMultipleReturnType MatrixBase::operator*(const UniformScaling& s) const { return derived() * s.factor(); } /** Constructs a uniform scaling from scale factor \a s */ static inline UniformScaling Scaling(float s) { return UniformScaling(s); } /** Constructs a uniform scaling from scale factor \a s */ static inline UniformScaling Scaling(double s) { return UniformScaling(s); } /** Constructs a uniform scaling from scale factor \a s */ template static inline UniformScaling > Scaling(const std::complex& s) { return UniformScaling >(s); } /** Constructs a 2D axis aligned scaling */ template static inline DiagonalMatrix Scaling(Scalar sx, Scalar sy) { return DiagonalMatrix(sx, sy); } /** Constructs a 3D axis aligned scaling */ template static inline DiagonalMatrix Scaling(Scalar sx, Scalar sy, Scalar sz) { return DiagonalMatrix(sx, sy, sz); } /** Constructs an axis aligned scaling expression from vector expression \a coeffs * This is an alias for coeffs.asDiagonal() */ template static inline const DiagonalMatrixWrapper Scaling(const MatrixBase& coeffs) { return coeffs.asDiagonal(); } /** \addtogroup Geometry_Module */ //@{ /** \deprecated */ typedef DiagonalMatrix AlignedScaling2f; /** \deprecated */ typedef DiagonalMatrix AlignedScaling2d; /** \deprecated */ typedef DiagonalMatrix AlignedScaling3f; /** \deprecated */ typedef DiagonalMatrix AlignedScaling3d; //@} #endif // EIGEN_SCALING_H