// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Benoit Jacob // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include using namespace std; template void lu_non_invertible() { typedef typename MatrixType::Scalar Scalar; /* this test covers the following files: LU.h */ int rows, cols, cols2; if(MatrixType::RowsAtCompileTime==Dynamic) { rows = ei_random(2,200); } else { rows = MatrixType::RowsAtCompileTime; } if(MatrixType::ColsAtCompileTime==Dynamic) { cols = ei_random(2,200); cols2 = ei_random(2,200); } else { cols2 = cols = MatrixType::ColsAtCompileTime; } typedef typename ei_kernel_retval_base >::ReturnMatrixType KernelMatrixType; typedef typename ei_image_retval_base >::ReturnMatrixType ImageMatrixType; typedef Matrix DynamicMatrixType; typedef Matrix CMatrixType; int rank = ei_random(1, std::min(rows, cols)-1); // The image of the zero matrix should consist of a single (zero) column vector VERIFY((MatrixType::Zero(rows,cols).fullPivLu().image(MatrixType::Zero(rows,cols)).cols() == 1)); MatrixType m1(rows, cols), m3(rows, cols2); CMatrixType m2(cols, cols2); createRandomMatrixOfRank(rank, rows, cols, m1); FullPivLU lu(m1); // FIXME need better way to construct trapezoid matrices. extend triangularView to support rectangular. DynamicMatrixType u(rows,cols); for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) u(i,j) = i>j ? Scalar(0) : lu.matrixLU()(i,j); DynamicMatrixType l(rows,rows); for(int i = 0; i < rows; i++) for(int j = 0; j < rows; j++) l(i,j) = (i=cols) ? Scalar(0) : i==j ? Scalar(1) : lu.matrixLU()(i,j); VERIFY_IS_APPROX(lu.permutationP() * m1 * lu.permutationQ(), l*u); KernelMatrixType m1kernel = lu.kernel(); ImageMatrixType m1image = lu.image(m1); VERIFY(rank == lu.rank()); VERIFY(cols - lu.rank() == lu.dimensionOfKernel()); VERIFY(!lu.isInjective()); VERIFY(!lu.isInvertible()); VERIFY(!lu.isSurjective()); VERIFY((m1 * m1kernel).isMuchSmallerThan(m1)); VERIFY(m1image.fullPivLu().rank() == rank); DynamicMatrixType sidebyside(m1.rows(), m1.cols() + m1image.cols()); sidebyside << m1, m1image; VERIFY(sidebyside.fullPivLu().rank() == rank); m2 = CMatrixType::Random(cols,cols2); m3 = m1*m2; m2 = CMatrixType::Random(cols,cols2); // test that the code, which does resize(), may be applied to an xpr m2.block(0,0,m2.rows(),m2.cols()) = lu.solve(m3); VERIFY_IS_APPROX(m3, m1*m2); } template void lu_invertible() { /* this test covers the following files: LU.h */ typedef typename NumTraits::Real RealScalar; int size = ei_random(1,200); MatrixType m1(size, size), m2(size, size), m3(size, size); m1 = MatrixType::Random(size,size); if (ei_is_same_type::ret) { // let's build a matrix more stable to inverse MatrixType a = MatrixType::Random(size,size*2); m1 += a * a.adjoint(); } FullPivLU lu(m1); VERIFY(0 == lu.dimensionOfKernel()); VERIFY(lu.kernel().cols() == 1); // the kernel() should consist of a single (zero) column vector VERIFY(size == lu.rank()); VERIFY(lu.isInjective()); VERIFY(lu.isSurjective()); VERIFY(lu.isInvertible()); VERIFY(lu.image(m1).fullPivLu().isInvertible()); m3 = MatrixType::Random(size,size); m2 = lu.solve(m3); VERIFY_IS_APPROX(m3, m1*m2); VERIFY_IS_APPROX(m2, lu.inverse()*m3); } template void lu_verify_assert() { MatrixType tmp; FullPivLU lu; VERIFY_RAISES_ASSERT(lu.matrixLU()) VERIFY_RAISES_ASSERT(lu.permutationP()) VERIFY_RAISES_ASSERT(lu.permutationQ()) VERIFY_RAISES_ASSERT(lu.kernel()) VERIFY_RAISES_ASSERT(lu.image(tmp)) VERIFY_RAISES_ASSERT(lu.solve(tmp)) VERIFY_RAISES_ASSERT(lu.determinant()) VERIFY_RAISES_ASSERT(lu.rank()) VERIFY_RAISES_ASSERT(lu.dimensionOfKernel()) VERIFY_RAISES_ASSERT(lu.isInjective()) VERIFY_RAISES_ASSERT(lu.isSurjective()) VERIFY_RAISES_ASSERT(lu.isInvertible()) VERIFY_RAISES_ASSERT(lu.inverse()) PartialPivLU plu; VERIFY_RAISES_ASSERT(plu.matrixLU()) VERIFY_RAISES_ASSERT(plu.permutationP()) VERIFY_RAISES_ASSERT(plu.solve(tmp)) VERIFY_RAISES_ASSERT(plu.determinant()) VERIFY_RAISES_ASSERT(plu.inverse()) } void test_lu() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( lu_non_invertible() ); CALL_SUBTEST_1( lu_verify_assert() ); CALL_SUBTEST_2( (lu_non_invertible >()) ); CALL_SUBTEST_2( (lu_verify_assert >()) ); CALL_SUBTEST_3( lu_non_invertible() ); CALL_SUBTEST_3( lu_invertible() ); CALL_SUBTEST_3( lu_verify_assert() ); CALL_SUBTEST_4( lu_non_invertible() ); CALL_SUBTEST_4( lu_invertible() ); CALL_SUBTEST_4( lu_verify_assert() ); CALL_SUBTEST_5( lu_non_invertible() ); CALL_SUBTEST_5( lu_invertible() ); CALL_SUBTEST_5( lu_verify_assert() ); CALL_SUBTEST_6( lu_non_invertible() ); CALL_SUBTEST_6( lu_invertible() ); CALL_SUBTEST_6( lu_verify_assert() ); CALL_SUBTEST_7(( lu_non_invertible >() )); } }