// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <g.gael@free.fr> // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see <http://www.gnu.org/licenses/>. #ifndef EIGEN_EULERANGLES_H #define EIGEN_EULERANGLES_H template<typename Other, int OtherRows=Other::RowsAtCompileTime, int OtherCols=Other::ColsAtCompileTime> struct ei_eulerangles_assign_impl; // enum { // XYZ, // XYX, // // // }; /** \class EulerAngles * * \brief Represents a rotation in a 3 dimensional space as three Euler angles * * \param _Scalar the scalar type, i.e., the type of the angles. * * \sa class Quaternion, class AngleAxis, class Transform */ template<typename _Scalar> class EulerAngles { public: enum { Dim = 3 }; /** the scalar type of the coefficients */ typedef _Scalar Scalar; typedef Matrix<Scalar,3,3> Matrix3; typedef Matrix<Scalar,3,1> Vector3; typedef Quaternion<Scalar> QuaternionType; typedef AngleAxis<Scalar> AngleAxisType; protected: Vector3 m_angles; public: EulerAngles() {} inline EulerAngles(Scalar a0, Scalar a1, Scalar a2) : m_angles(a0, a1, a2) {} inline EulerAngles(const QuaternionType& q) { *this = q; } inline EulerAngles(const AngleAxisType& aa) { *this = aa; } template<typename Derived> inline EulerAngles(const MatrixBase<Derived>& m) { *this = m; } Scalar angle(int i) const { return m_angles.coeff(i); } Scalar& angle(int i) { return m_angles.coeffRef(i); } const Vector3& coeffs() const { return m_angles; } Vector3& coeffs() { return m_angles; } EulerAngles& operator=(const QuaternionType& q); EulerAngles& operator=(const AngleAxisType& ea); template<typename Derived> EulerAngles& operator=(const MatrixBase<Derived>& m); template<typename Derived> EulerAngles& fromRotationMatrix(const MatrixBase<Derived>& m); Matrix3 toRotationMatrix(void) const; }; /** Set \c *this from a quaternion. * The axis is normalized. */ template<typename Scalar> EulerAngles<Scalar>& EulerAngles<Scalar>::operator=(const QuaternionType& q) { Scalar y2 = q.y() * q.y(); m_angles.coeffRef(0) = std::atan2(2*(q.w()*q.x() + q.y()*q.z()), (1 - 2*(q.x()*q.x() + y2))); m_angles.coeffRef(1) = std::asin( 2*(q.w()*q.y() - q.z()*q.x())); m_angles.coeffRef(2) = std::atan2(2*(q.w()*q.z() + q.x()*q.y()), (1 - 2*(y2 + q.z()*q.z()))); return *this; } /** Set \c *this from Euler angles \a ea. */ template<typename Scalar> EulerAngles<Scalar>& EulerAngles<Scalar>::operator=(const AngleAxisType& aa) { return *this = QuaternionType(aa); } /** Set \c *this from the expression \a xpr: * - if \a xpr is a 3x1 vector, then \a xpr is assumed to be a vector of angles * - if \a xpr is a 3x3 matrix, then \a xpr is assumed to be rotation matrix * and \a xpr is converted to Euler angles */ template<typename Scalar> template<typename Derived> EulerAngles<Scalar>& EulerAngles<Scalar>::operator=(const MatrixBase<Derived>& other) { ei_eulerangles_assign_impl<Derived>::run(*this,other.derived()); return *this; } /** Constructs and \returns an equivalent 3x3 rotation matrix. */ template<typename Scalar> typename EulerAngles<Scalar>::Matrix3 EulerAngles<Scalar>::toRotationMatrix(void) const { Vector3 c = m_angles.cwise().cos(); Vector3 s = m_angles.cwise().sin(); return Matrix3() << c.y()*c.z(), -c.y()*s.z(), s.y(), c.z()*s.x()*s.y()+c.x()*s.z(), c.x()*c.z()-s.x()*s.y()*s.z(), -c.y()*s.x(), -c.x()*c.z()*s.y()+s.x()*s.z(), c.z()*s.x()+c.x()*s.y()*s.z(), c.x()*c.y(); } // set from a rotation matrix template<typename Other> struct ei_eulerangles_assign_impl<Other,3,3> { typedef typename Other::Scalar Scalar; inline static void run(EulerAngles<Scalar>& ea, const Other& mat) { // mat = cy*cz -cy*sz sy // cz*sx*sy+cx*sz cx*cz-sx*sy*sz -cy*sx // -cx*cz*sy+sx*sz cz*sx+cx*sy*sz cx*cy ea.angle(1) = std::asin(mat.coeff(0,2)); ea.angle(0) = std::atan2(-mat.coeff(1,2),mat.coeff(2,2)); ea.angle(2) = std::atan2(-mat.coeff(0,1),mat.coeff(0,0)); } }; // set from a vector of angles template<typename Other> struct ei_eulerangles_assign_impl<Other,3,1> { typedef typename Other::Scalar Scalar; inline static void run(EulerAngles<Scalar>& ea, const Other& vec) { ea.coeffs() = vec; } }; #endif // EIGEN_EULERANGLES_H