// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008-2009 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include #include /* Check that two column vectors are approximately equal upto permutations, by checking that the k-th power sums are equal for k = 1, ..., vec1.rows() */ template void verify_is_approx_upto_permutation(const VectorType& vec1, const VectorType& vec2) { VERIFY(vec1.cols() == 1); VERIFY(vec2.cols() == 1); VERIFY(vec1.rows() == vec2.rows()); for (int k = 1; k <= vec1.rows(); ++k) { VERIFY_IS_APPROX(vec1.array().pow(k).sum(), vec2.array().pow(k).sum()); } } template void eigensolver(const MatrixType& m) { /* this test covers the following files: ComplexEigenSolver.h, and indirectly ComplexSchur.h */ int rows = m.rows(); int cols = m.cols(); typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits::Real RealScalar; typedef Matrix VectorType; typedef Matrix RealVectorType; typedef typename std::complex::Real> Complex; MatrixType a = MatrixType::Random(rows,cols); MatrixType symmA = a.adjoint() * a; ComplexEigenSolver ei0(symmA); VERIFY_IS_APPROX(symmA * ei0.eigenvectors(), ei0.eigenvectors() * ei0.eigenvalues().asDiagonal()); ComplexEigenSolver ei1(a); VERIFY_IS_APPROX(a * ei1.eigenvectors(), ei1.eigenvectors() * ei1.eigenvalues().asDiagonal()); // Note: If MatrixType is real then a.eigenvalues() uses EigenSolver and thus // another algorithm so results may differ slightly verify_is_approx_upto_permutation(a.eigenvalues(), ei1.eigenvalues()); // Regression test for issue #66 MatrixType z = MatrixType::Zero(rows,cols); ComplexEigenSolver eiz(z); VERIFY((eiz.eigenvalues().cwiseEqual(0)).all()); MatrixType id = MatrixType::Identity(rows, cols); VERIFY_IS_APPROX(id.operatorNorm(), RealScalar(1)); } template void eigensolver_verify_assert() { ComplexEigenSolver eig; VERIFY_RAISES_ASSERT(eig.eigenvectors()) VERIFY_RAISES_ASSERT(eig.eigenvalues()) } void test_eigensolver_complex() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( eigensolver(Matrix4cf()) ); CALL_SUBTEST_2( eigensolver(MatrixXcd(14,14)) ); CALL_SUBTEST_3( eigensolver(Matrix, 1, 1>()) ); CALL_SUBTEST_4( eigensolver(Matrix3f()) ); } CALL_SUBTEST_1( eigensolver_verify_assert() ); CALL_SUBTEST_2( eigensolver_verify_assert() ); CALL_SUBTEST_3(( eigensolver_verify_assert, 1, 1> >() )); CALL_SUBTEST_4( eigensolver_verify_assert() ); // Test problem size constructors CALL_SUBTEST_5(ComplexEigenSolver(10)); }