// This file is part of Eigen, a lightweight C++ template library // for linear algebra. Eigen itself is part of the KDE project. // // Copyright (C) 2008 Gael Guennebaud // // Eigen is free software; you can redistribute it and/or // modify it under the terms of the GNU Lesser General Public // License as published by the Free Software Foundation; either // version 3 of the License, or (at your option) any later version. // // Alternatively, you can redistribute it and/or // modify it under the terms of the GNU General Public License as // published by the Free Software Foundation; either version 2 of // the License, or (at your option) any later version. // // Eigen is distributed in the hope that it will be useful, but WITHOUT ANY // WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS // FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the // GNU General Public License for more details. // // You should have received a copy of the GNU Lesser General Public // License and a copy of the GNU General Public License along with // Eigen. If not, see . #include "main.h" #include template void scalarAdd(const MatrixType& m) { /* this test covers the following files: Array.cpp */ typedef typename MatrixType::Scalar Scalar; typedef Matrix VectorType; int rows = m.rows(); int cols = m.cols(); MatrixType m1 = MatrixType::random(rows, cols), m2 = MatrixType::random(rows, cols), m3(rows, cols); Scalar s1 = ei_random(), s2 = ei_random(); VERIFY_IS_APPROX(m1.array() + s1, s1 + m1.array()); VERIFY_IS_APPROX(m1.array() + s1, MatrixType::constant(rows,cols,s1) + m1); VERIFY_IS_APPROX((m1*Scalar(2)).array() - s2, (m1+m1) - MatrixType::constant(rows,cols,s2) ); m3 = m1; m3.array() += s2; VERIFY_IS_APPROX(m3, m1.array() + s2); m3 = m1; m3.array() -= s1; VERIFY_IS_APPROX(m3, m1.array() - s1); } template void comparisons(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef Matrix VectorType; int rows = m.rows(); int cols = m.cols(); int r = ei_random(0, rows-1), c = ei_random(0, cols-1); MatrixType m1 = MatrixType::random(rows, cols), m2 = MatrixType::random(rows, cols), m3(rows, cols); VERIFY((m1.array() + Scalar(1)).array() > m1.array()); VERIFY((m1.array() - Scalar(1)).array() < m1.array()); if (rows*cols>1) { m3 = m1; m3(r,c) += 1; VERIFY(! (m1.array() < m3.array()) ); VERIFY(! (m1.array() > m3.array()) ); } } void test_array() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( scalarAdd(Matrix()) ); CALL_SUBTEST( scalarAdd(Matrix2f()) ); CALL_SUBTEST( scalarAdd(Matrix4d()) ); CALL_SUBTEST( scalarAdd(MatrixXcf(3, 3)) ); CALL_SUBTEST( scalarAdd(MatrixXf(8, 12)) ); CALL_SUBTEST( scalarAdd(MatrixXi(8, 12)) ); } for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST( comparisons(Matrix()) ); CALL_SUBTEST( comparisons(Matrix2f()) ); CALL_SUBTEST( comparisons(Matrix4d()) ); CALL_SUBTEST( comparisons(MatrixXf(8, 12)) ); CALL_SUBTEST( comparisons(MatrixXi(8, 12)) ); } }