// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Benoit Jacob // Copyright (C) 2010 Hauke Heibel // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include #include EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Vector4f) EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Matrix2f) EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Matrix4f) EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Matrix4d) EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Affine3f) EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Affine3d) EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Quaternionf) EIGEN_DEFINE_STL_DEQUE_SPECIALIZATION(Quaterniond) template void check_stddeque_matrix(const MatrixType& m) { Index rows = m.rows(); Index cols = m.cols(); MatrixType x = MatrixType::Random(rows, cols), y = MatrixType::Random(rows, cols); std::deque v(10, MatrixType::Zero(rows, cols)), w(20, y); v[5] = x; w[6] = v[5]; VERIFY_IS_APPROX(w[6], v[5]); v = w; for (int i = 0; i < 20; i++) { VERIFY_IS_APPROX(w[i], v[i]); } v.resize(21); v[20] = x; VERIFY_IS_APPROX(v[20], x); v.resize(22, y); VERIFY_IS_APPROX(v[21], y); v.push_back(x); VERIFY_IS_APPROX(v[22], x); // do a lot of push_back such that the deque gets internally resized // (with memory reallocation) MatrixType* ref = &w[0]; for (int i = 0; i < 30 || ((ref == &w[0]) && i < 300); ++i) v.push_back(w[i % w.size()]); for (unsigned int i = 23; i < v.size(); ++i) { VERIFY(v[i] == w[(i - 23) % w.size()]); } } template void check_stddeque_transform(const TransformType&) { typedef typename TransformType::MatrixType MatrixType; TransformType x(MatrixType::Random()), y(MatrixType::Random()), ti = TransformType::Identity(); std::deque v(10, ti), w(20, y); v[5] = x; w[6] = v[5]; VERIFY_IS_APPROX(w[6], v[5]); v = w; for (int i = 0; i < 20; i++) { VERIFY_IS_APPROX(w[i], v[i]); } v.resize(21, ti); v[20] = x; VERIFY_IS_APPROX(v[20], x); v.resize(22, y); VERIFY_IS_APPROX(v[21], y); v.push_back(x); VERIFY_IS_APPROX(v[22], x); // do a lot of push_back such that the deque gets internally resized // (with memory reallocation) TransformType* ref = &w[0]; for (int i = 0; i < 30 || ((ref == &w[0]) && i < 300); ++i) v.push_back(w[i % w.size()]); for (unsigned int i = 23; i < v.size(); ++i) { VERIFY(v[i].matrix() == w[(i - 23) % w.size()].matrix()); } } template void check_stddeque_quaternion(const QuaternionType&) { typedef typename QuaternionType::Coefficients Coefficients; QuaternionType x(Coefficients::Random()), y(Coefficients::Random()), qi = QuaternionType::Identity(); std::deque v(10, qi), w(20, y); v[5] = x; w[6] = v[5]; VERIFY_IS_APPROX(w[6], v[5]); v = w; for (int i = 0; i < 20; i++) { VERIFY_IS_APPROX(w[i], v[i]); } v.resize(21, qi); v[20] = x; VERIFY_IS_APPROX(v[20], x); v.resize(22, y); VERIFY_IS_APPROX(v[21], y); v.push_back(x); VERIFY_IS_APPROX(v[22], x); // do a lot of push_back such that the deque gets internally resized // (with memory reallocation) QuaternionType* ref = &w[0]; for (int i = 0; i < 30 || ((ref == &w[0]) && i < 300); ++i) v.push_back(w[i % w.size()]); for (unsigned int i = 23; i < v.size(); ++i) { VERIFY(v[i].coeffs() == w[(i - 23) % w.size()].coeffs()); } } EIGEN_DECLARE_TEST(stddeque_overload) { // some non vectorizable fixed sizes CALL_SUBTEST_1(check_stddeque_matrix(Vector2f())); CALL_SUBTEST_1(check_stddeque_matrix(Matrix3f())); CALL_SUBTEST_2(check_stddeque_matrix(Matrix3d())); // some vectorizable fixed sizes CALL_SUBTEST_1(check_stddeque_matrix(Matrix2f())); CALL_SUBTEST_1(check_stddeque_matrix(Vector4f())); CALL_SUBTEST_1(check_stddeque_matrix(Matrix4f())); CALL_SUBTEST_2(check_stddeque_matrix(Matrix4d())); // some dynamic sizes CALL_SUBTEST_3(check_stddeque_matrix(MatrixXd(1, 1))); CALL_SUBTEST_3(check_stddeque_matrix(VectorXd(20))); CALL_SUBTEST_3(check_stddeque_matrix(RowVectorXf(20))); CALL_SUBTEST_3(check_stddeque_matrix(MatrixXcf(10, 10))); // some Transform CALL_SUBTEST_4(check_stddeque_transform(Affine2f())); // does not need the specialization (2+1)^2 = 9 CALL_SUBTEST_4(check_stddeque_transform(Affine3f())); CALL_SUBTEST_4(check_stddeque_transform(Affine3d())); // some Quaternion CALL_SUBTEST_5(check_stddeque_quaternion(Quaternionf())); CALL_SUBTEST_5(check_stddeque_quaternion(Quaterniond())); }