// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2011 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "sparse.h" template void sparse_vector(int rows, int cols) { double densityMat = (std::max)(8. / (rows * cols), 0.01); double densityVec = (std::max)(8. / (rows), 0.1); typedef Matrix DenseMatrix; typedef Matrix DenseVector; typedef Matrix DenseIndexVector; typedef SparseVector SparseVectorType; typedef SparseMatrix SparseMatrixType; Scalar eps = 1e-6; SparseMatrixType m1(rows, rows); SparseVectorType v1(rows), v2(rows), v3(rows); DenseMatrix refM1 = DenseMatrix::Zero(rows, rows); DenseVector refV1 = DenseVector::Random(rows), refV2 = DenseVector::Random(rows), refV3 = DenseVector::Random(rows); std::vector zerocoords, nonzerocoords; initSparse(densityVec, refV1, v1, &zerocoords, &nonzerocoords); initSparse(densityMat, refM1, m1); initSparse(densityVec, refV2, v2); initSparse(densityVec, refV3, v3); Scalar s1 = internal::random(); // test coeff and coeffRef for (unsigned int i = 0; i < zerocoords.size(); ++i) { VERIFY_IS_MUCH_SMALLER_THAN(v1.coeff(zerocoords[i]), eps); // VERIFY_RAISES_ASSERT( v1.coeffRef(zerocoords[i]) = 5 ); } { VERIFY(int(nonzerocoords.size()) == v1.nonZeros()); int j = 0; for (typename SparseVectorType::InnerIterator it(v1); it; ++it, ++j) { VERIFY(nonzerocoords[j] == it.index()); VERIFY_IS_EQUAL(it.value(), v1.coeff(it.index())); VERIFY_IS_EQUAL(it.value(), refV1.coeff(it.index())); } } VERIFY_IS_APPROX(v1, refV1); // test coeffRef with reallocation { SparseVectorType v4(rows); DenseVector v5 = DenseVector::Zero(rows); for (int k = 0; k < rows; ++k) { int i = internal::random(0, rows - 1); Scalar v = internal::random(); v4.coeffRef(i) += v; v5.coeffRef(i) += v; } VERIFY_IS_APPROX(v4, v5); } v1.coeffRef(nonzerocoords[0]) = Scalar(5); refV1.coeffRef(nonzerocoords[0]) = Scalar(5); VERIFY_IS_APPROX(v1, refV1); VERIFY_IS_APPROX(v1 + v2, refV1 + refV2); VERIFY_IS_APPROX(v1 + v2 + v3, refV1 + refV2 + refV3); VERIFY_IS_APPROX(v1 * s1 - v2, refV1 * s1 - refV2); VERIFY_IS_APPROX(v1 *= s1, refV1 *= s1); VERIFY_IS_APPROX(v1 /= s1, refV1 /= s1); VERIFY_IS_APPROX(v1 += v2, refV1 += refV2); VERIFY_IS_APPROX(v1 -= v2, refV1 -= refV2); VERIFY_IS_APPROX(v1.dot(v2), refV1.dot(refV2)); VERIFY_IS_APPROX(v1.dot(refV2), refV1.dot(refV2)); VERIFY_IS_APPROX(m1 * v2, refM1 * refV2); VERIFY_IS_APPROX(v1.dot(m1 * v2), refV1.dot(refM1 * refV2)); { int i = internal::random(0, rows - 1); VERIFY_IS_APPROX(v1.dot(m1.col(i)), refV1.dot(refM1.col(i))); } VERIFY_IS_APPROX(v1.squaredNorm(), refV1.squaredNorm()); VERIFY_IS_APPROX(v1.blueNorm(), refV1.blueNorm()); // test aliasing VERIFY_IS_APPROX((v1 = -v1), (refV1 = -refV1)); VERIFY_IS_APPROX((v1 = v1.transpose()), (refV1 = refV1.transpose().eval())); VERIFY_IS_APPROX((v1 += -v1), (refV1 += -refV1)); // sparse matrix to sparse vector SparseMatrixType mv1; VERIFY_IS_APPROX((mv1 = v1), v1); VERIFY_IS_APPROX(mv1, (v1 = mv1)); VERIFY_IS_APPROX(mv1, (v1 = mv1.transpose())); // check copy to dense vector with transpose refV3.resize(0); VERIFY_IS_APPROX(refV3 = v1.transpose(), v1.toDense()); VERIFY_IS_APPROX(DenseVector(v1), v1.toDense()); // test move { SparseVectorType tmp(std::move(v1)); VERIFY_IS_APPROX(tmp, refV1); v1 = tmp; } { SparseVectorType tmp; tmp = std::move(v1); VERIFY_IS_APPROX(tmp, refV1); v1 = tmp; } { SparseVectorType tmp(std::move(mv1)); VERIFY_IS_APPROX(tmp, refV1); mv1 = tmp; } { SparseVectorType tmp; tmp = std::move(mv1); VERIFY_IS_APPROX(tmp, refV1); mv1 = tmp; } // test conservative resize { std::vector inc; if (rows > 3) inc.push_back(-3); inc.push_back(0); inc.push_back(3); inc.push_back(1); inc.push_back(10); for (std::size_t i = 0; i < inc.size(); i++) { StorageIndex incRows = inc[i]; SparseVectorType vec1(rows); DenseVector refVec1 = DenseVector::Zero(rows); initSparse(densityVec, refVec1, vec1); vec1.conservativeResize(rows + incRows); refVec1.conservativeResize(rows + incRows); if (incRows > 0) refVec1.tail(incRows).setZero(); VERIFY_IS_APPROX(vec1, refVec1); // Insert new values if (incRows > 0) vec1.insert(vec1.rows() - 1) = refVec1(refVec1.rows() - 1) = 1; VERIFY_IS_APPROX(vec1, refVec1); } } // test sort if (rows > 1) { SparseVectorType vec1(rows); DenseVector refVec1 = DenseVector::Zero(rows); DenseIndexVector innerIndices(rows); innerIndices.setLinSpaced(0, rows - 1); std::random_device rd; std::mt19937 g(rd()); std::shuffle(innerIndices.begin(), innerIndices.end(), g); Index nz = internal::random(2, rows / 2); for (Index k = 0; k < nz; k++) { Index i = innerIndices[k]; Scalar val = internal::random(); refVec1.coeffRef(i) = val; vec1.insert(i) = val; } vec1.template sortInnerIndices>(); VERIFY_IS_APPROX(vec1, refVec1); VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted>(), 1); VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted>(), 0); vec1.template sortInnerIndices>(); VERIFY_IS_APPROX(vec1, refVec1); VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted>(), 0); VERIFY_IS_EQUAL(vec1.template innerIndicesAreSorted>(), 1); } } void test_pruning() { using SparseVectorType = SparseVector; SparseVectorType vec; auto init_vec = [&]() { ; vec.resize(10); vec.insert(3) = 0.1; vec.insert(5) = 1.0; vec.insert(8) = -0.1; vec.insert(9) = -0.2; }; init_vec(); VERIFY_IS_EQUAL(vec.nonZeros(), 4); VERIFY_IS_EQUAL(vec.prune(0.1, 1.0), 2); VERIFY_IS_EQUAL(vec.nonZeros(), 2); VERIFY_IS_EQUAL(vec.coeff(5), 1.0); VERIFY_IS_EQUAL(vec.coeff(9), -0.2); init_vec(); VERIFY_IS_EQUAL(vec.prune([](double v) { return v >= 0; }), 2); VERIFY_IS_EQUAL(vec.nonZeros(), 2); VERIFY_IS_EQUAL(vec.coeff(3), 0.1); VERIFY_IS_EQUAL(vec.coeff(5), 1.0); } EIGEN_DECLARE_TEST(sparse_vector) { for (int i = 0; i < g_repeat; i++) { int r = Eigen::internal::random(1, 500), c = Eigen::internal::random(1, 500); if (Eigen::internal::random(0, 4) == 0) { r = c; // check square matrices in 25% of tries } EIGEN_UNUSED_VARIABLE(r + c); CALL_SUBTEST_1((sparse_vector(8, 8))); CALL_SUBTEST_2((sparse_vector, int>(r, c))); CALL_SUBTEST_1((sparse_vector(r, c))); CALL_SUBTEST_1((sparse_vector(r, c))); } CALL_SUBTEST_1(test_pruning()); }