// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "product.h" #include template void test_aliasing() { int rows = internal::random(1, 12); int cols = internal::random(1, 12); typedef Matrix MatrixType; typedef Matrix VectorType; VectorType x(cols); x.setRandom(); VectorType z(x); VectorType y(rows); y.setZero(); MatrixType A(rows, cols); A.setRandom(); // CwiseBinaryOp VERIFY_IS_APPROX(x = y + A * x, A * z); // OK because "y + A*x" is marked as "assume-aliasing" x = z; // CwiseUnaryOp VERIFY_IS_APPROX(x = T(1.) * (A * x), A * z); // OK because 1*(A*x) is replaced by (1*A*x) which is a Product<> expression x = z; // VERIFY_IS_APPROX(x = y-A*x, -A*z); // Not OK in 3.3 because x is resized before A*x gets evaluated x = z; } template void product_large_regressions() { { // test a specific issue in DiagonalProduct int N = 1000000; VectorXf v = VectorXf::Ones(N); MatrixXf m = MatrixXf::Ones(N, 3); m = (v + v).asDiagonal() * m; VERIFY_IS_APPROX(m, MatrixXf::Constant(N, 3, 2)); } { // test deferred resizing in Matrix::operator= MatrixXf a = MatrixXf::Random(10, 4), b = MatrixXf::Random(4, 10), c = a; VERIFY_IS_APPROX((a = a * b), (c * b).eval()); } { // check the functions to setup blocking sizes compile and do not segfault // FIXME check they do what they are supposed to do !! std::ptrdiff_t l1 = internal::random(10000, 20000); std::ptrdiff_t l2 = internal::random(100000, 200000); std::ptrdiff_t l3 = internal::random(1000000, 2000000); setCpuCacheSizes(l1, l2, l3); VERIFY(l1 == l1CacheSize()); VERIFY(l2 == l2CacheSize()); std::ptrdiff_t k1 = internal::random(10, 100) * 16; std::ptrdiff_t m1 = internal::random(10, 100) * 16; std::ptrdiff_t n1 = internal::random(10, 100) * 16; // only makes sure it compiles fine internal::computeProductBlockingSizes(k1, m1, n1, 1); } { // test regression in row-vector by matrix (bad Map type) MatrixXf mat1(10, 32); mat1.setRandom(); MatrixXf mat2(32, 32); mat2.setRandom(); MatrixXf r1 = mat1.row(2) * mat2.transpose(); VERIFY_IS_APPROX(r1, (mat1.row(2) * mat2.transpose()).eval()); MatrixXf r2 = mat1.row(2) * mat2; VERIFY_IS_APPROX(r2, (mat1.row(2) * mat2).eval()); } { Eigen::MatrixXd A(10, 10), B, C; A.setRandom(); C = A; for (int k = 0; k < 79; ++k) C = C * A; B.noalias() = (((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A))) * (((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A)) * ((A * A) * (A * A))); VERIFY_IS_APPROX(B, C); } } template void bug_1622() { typedef Matrix Mat2X; Mat2X x(2, 2); x.setRandom(); MatrixXd y(2, 2); y.setRandom(); const Mat2X K1 = x * y.inverse(); const Matrix2d K2 = x * y.inverse(); VERIFY_IS_APPROX(K1, K2); } EIGEN_DECLARE_TEST(product_large) { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(product( MatrixXf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_2(product( MatrixXd(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_2(product(MatrixXd(internal::random(1, 10), internal::random(1, 10)))); CALL_SUBTEST_3(product( MatrixXi(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_4(product(MatrixXcf(internal::random(1, EIGEN_TEST_MAX_SIZE / 2), internal::random(1, EIGEN_TEST_MAX_SIZE / 2)))); CALL_SUBTEST_5(product(Matrix(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_1(test_aliasing()); CALL_SUBTEST_6(bug_1622<1>()); CALL_SUBTEST_7(product(MatrixXcd(internal::random(1, EIGEN_TEST_MAX_SIZE / 2), internal::random(1, EIGEN_TEST_MAX_SIZE / 2)))); CALL_SUBTEST_8(product(Matrix(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_9(product(Matrix, Dynamic, Dynamic, RowMajor>( internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_10(product(Matrix, Dynamic, Dynamic, RowMajor>( internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_11(product(Matrix( internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); } CALL_SUBTEST_6(product_large_regressions<0>()); // Regression test for bug 714: #if defined EIGEN_HAS_OPENMP omp_set_dynamic(1); for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_6(product(Matrix(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); } #endif }