// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2008 Benoit Jacob // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" template void product_extra(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; typedef Matrix RowVectorType; typedef Matrix ColVectorType; typedef Matrix OtherMajorMatrixType; Index rows = m.rows(); Index cols = m.cols(); MatrixType m1 = MatrixType::Random(rows, cols), m2 = MatrixType::Random(rows, cols), m3(rows, cols), mzero = MatrixType::Zero(rows, cols), identity = MatrixType::Identity(rows, rows), square = MatrixType::Random(rows, rows), res = MatrixType::Random(rows, rows), square2 = MatrixType::Random(cols, cols), res2 = MatrixType::Random(cols, cols); RowVectorType v1 = RowVectorType::Random(rows), vrres(rows); ColVectorType vc2 = ColVectorType::Random(cols), vcres(cols); OtherMajorMatrixType tm1 = m1; Scalar s1 = internal::random(), s2 = internal::random(), s3 = internal::random(); VERIFY_IS_APPROX(m3.noalias() = m1 * m2.adjoint(), m1 * m2.adjoint().eval()); VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * square.adjoint(), m1.adjoint().eval() * square.adjoint().eval()); VERIFY_IS_APPROX(m3.noalias() = m1.adjoint() * m2, m1.adjoint().eval() * m2); VERIFY_IS_APPROX(m3.noalias() = (s1 * m1.adjoint()) * m2, (s1 * m1.adjoint()).eval() * m2); VERIFY_IS_APPROX(m3.noalias() = ((s1 * m1).adjoint()) * m2, (numext::conj(s1) * m1.adjoint()).eval() * m2); VERIFY_IS_APPROX(m3.noalias() = (-m1.adjoint() * s1) * (s3 * m2), (-m1.adjoint() * s1).eval() * (s3 * m2).eval()); VERIFY_IS_APPROX(m3.noalias() = (s2 * m1.adjoint() * s1) * m2, (s2 * m1.adjoint() * s1).eval() * m2); VERIFY_IS_APPROX(m3.noalias() = (-m1 * s2) * s1 * m2.adjoint(), (-m1 * s2).eval() * (s1 * m2.adjoint()).eval()); // a very tricky case where a scale factor has to be automatically conjugated: VERIFY_IS_APPROX(m1.adjoint() * (s1 * m2).conjugate(), (m1.adjoint()).eval() * ((s1 * m2).conjugate()).eval()); // test all possible conjugate combinations for the four matrix-vector product cases: VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2), (-m1.conjugate() * s2).eval() * (s1 * vc2).eval()); VERIFY_IS_APPROX((-m1 * s2) * (s1 * vc2.conjugate()), (-m1 * s2).eval() * (s1 * vc2.conjugate()).eval()); VERIFY_IS_APPROX((-m1.conjugate() * s2) * (s1 * vc2.conjugate()), (-m1.conjugate() * s2).eval() * (s1 * vc2.conjugate()).eval()); VERIFY_IS_APPROX((s1 * vc2.transpose()) * (-m1.adjoint() * s2), (s1 * vc2.transpose()).eval() * (-m1.adjoint() * s2).eval()); VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.transpose() * s2), (s1 * vc2.adjoint()).eval() * (-m1.transpose() * s2).eval()); VERIFY_IS_APPROX((s1 * vc2.adjoint()) * (-m1.adjoint() * s2), (s1 * vc2.adjoint()).eval() * (-m1.adjoint() * s2).eval()); VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.transpose()), (-m1.adjoint() * s2).eval() * (s1 * v1.transpose()).eval()); VERIFY_IS_APPROX((-m1.transpose() * s2) * (s1 * v1.adjoint()), (-m1.transpose() * s2).eval() * (s1 * v1.adjoint()).eval()); VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), (-m1.adjoint() * s2).eval() * (s1 * v1.adjoint()).eval()); VERIFY_IS_APPROX((s1 * v1) * (-m1.conjugate() * s2), (s1 * v1).eval() * (-m1.conjugate() * s2).eval()); VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1 * s2), (s1 * v1.conjugate()).eval() * (-m1 * s2).eval()); VERIFY_IS_APPROX((s1 * v1.conjugate()) * (-m1.conjugate() * s2), (s1 * v1.conjugate()).eval() * (-m1.conjugate() * s2).eval()); VERIFY_IS_APPROX((-m1.adjoint() * s2) * (s1 * v1.adjoint()), (-m1.adjoint() * s2).eval() * (s1 * v1.adjoint()).eval()); // test the vector-matrix product with non aligned starts Index i = internal::random(0, m1.rows() - 2); Index j = internal::random(0, m1.cols() - 2); Index r = internal::random(1, m1.rows() - i); Index c = internal::random(1, m1.cols() - j); Index i2 = internal::random(0, m1.rows() - 1); Index j2 = internal::random(0, m1.cols() - 1); VERIFY_IS_APPROX(m1.col(j2).adjoint() * m1.block(0, j, m1.rows(), c), m1.col(j2).adjoint().eval() * m1.block(0, j, m1.rows(), c).eval()); VERIFY_IS_APPROX(m1.block(i, 0, r, m1.cols()) * m1.row(i2).adjoint(), m1.block(i, 0, r, m1.cols()).eval() * m1.row(i2).adjoint().eval()); // test negative strides { Map > map1(&m1(rows - 1, cols - 1), rows, cols, Stride(-m1.outerStride(), -1)); Map > map2(&m2(rows - 1, cols - 1), rows, cols, Stride(-m2.outerStride(), -1)); Map > mapv1(&v1(v1.size() - 1), v1.size(), InnerStride<-1>(-1)); Map > mapvc2(&vc2(vc2.size() - 1), vc2.size(), InnerStride<-1>(-1)); VERIFY_IS_APPROX(MatrixType(map1), m1.reverse()); VERIFY_IS_APPROX(MatrixType(map2), m2.reverse()); VERIFY_IS_APPROX(m3.noalias() = MatrixType(map1) * MatrixType(map2).adjoint(), m1.reverse() * m2.reverse().adjoint()); VERIFY_IS_APPROX(m3.noalias() = map1 * map2.adjoint(), m1.reverse() * m2.reverse().adjoint()); VERIFY_IS_APPROX(map1 * vc2, m1.reverse() * vc2); VERIFY_IS_APPROX(m1 * mapvc2, m1 * mapvc2); VERIFY_IS_APPROX(map1.adjoint() * v1.transpose(), m1.adjoint().reverse() * v1.transpose()); VERIFY_IS_APPROX(m1.adjoint() * mapv1.transpose(), m1.adjoint() * v1.reverse().transpose()); } // regression test MatrixType tmp = m1 * m1.adjoint() * s1; VERIFY_IS_APPROX(tmp, m1 * m1.adjoint() * s1); // regression test for bug 1343, assignment to arrays Array a1 = m1 * vc2; VERIFY_IS_APPROX(a1.matrix(), m1 * vc2); Array a2 = s1 * (m1 * vc2); VERIFY_IS_APPROX(a2.matrix(), s1 * m1 * vc2); Array a3 = v1 * m1; VERIFY_IS_APPROX(a3.matrix(), v1 * m1); Array a4 = m1 * m2.adjoint(); VERIFY_IS_APPROX(a4.matrix(), m1 * m2.adjoint()); } // Regression test for bug reported at http://forum.kde.org/viewtopic.php?f=74&t=96947 void mat_mat_scalar_scalar_product() { Eigen::Matrix2Xd dNdxy(2, 3); dNdxy << -0.5, 0.5, 0, -0.3, 0, 0.3; double det = 6.0, wt = 0.5; VERIFY_IS_APPROX(dNdxy.transpose() * dNdxy * det * wt, det * wt * dNdxy.transpose() * dNdxy); } template void zero_sized_objects(const MatrixType& m) { typedef typename MatrixType::Scalar Scalar; const int PacketSize = internal::packet_traits::size; const int PacketSize1 = PacketSize > 1 ? PacketSize - 1 : 1; Index rows = m.rows(); Index cols = m.cols(); { MatrixType res, a(rows, 0), b(0, cols); VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(rows, cols)); VERIFY_IS_APPROX((res = a * a.transpose()), MatrixType::Zero(rows, rows)); VERIFY_IS_APPROX((res = b.transpose() * b), MatrixType::Zero(cols, cols)); VERIFY_IS_APPROX((res = b.transpose() * a.transpose()), MatrixType::Zero(cols, rows)); } { MatrixType res, a(rows, cols), b(cols, 0); res = a * b; VERIFY(res.rows() == rows && res.cols() == 0); b.resize(0, rows); res = b * a; VERIFY(res.rows() == 0 && res.cols() == cols); } { Matrix a; Matrix b; Matrix res; VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize, 1)); VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize, 1)); } { Matrix a; Matrix b; Matrix res; VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize1, 1)); VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize1, 1)); } { Matrix a(PacketSize, 0); Matrix b(0, 1); Matrix res; VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize, 1)); VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize, 1)); } { Matrix a(PacketSize1, 0); Matrix b(0, 1); Matrix res; VERIFY_IS_APPROX((res = a * b), MatrixType::Zero(PacketSize1, 1)); VERIFY_IS_APPROX((res = a.lazyProduct(b)), MatrixType::Zero(PacketSize1, 1)); } } template void bug_127() { // Bug 127 // // a product of the form lhs*rhs with // // lhs: // rows = 1, cols = 4 // RowsAtCompileTime = 1, ColsAtCompileTime = -1 // MaxRowsAtCompileTime = 1, MaxColsAtCompileTime = 5 // // rhs: // rows = 4, cols = 0 // RowsAtCompileTime = -1, ColsAtCompileTime = -1 // MaxRowsAtCompileTime = 5, MaxColsAtCompileTime = 1 // // was failing on a runtime assertion, because it had been mis-compiled as a dot product because Product.h was using // the max-sizes to detect size 1 indicating vectors, and that didn't account for 0-sized object with max-size 1. Matrix a(1, 4); Matrix b(4, 0); a* b; } template void bug_817() { ArrayXXf B = ArrayXXf::Random(10, 10), C; VectorXf x = VectorXf::Random(10); C = (x.transpose() * B.matrix()); B = (x.transpose() * B.matrix()); VERIFY_IS_APPROX(B, C); } template void unaligned_objects() { // Regression test for the bug reported here: // http://forum.kde.org/viewtopic.php?f=74&t=107541 // Recall the matrix*vector kernel avoid unaligned loads by loading two packets and then reassemble then. // There was a mistake in the computation of the valid range for fully unaligned objects: in some rare cases, // memory was read outside the allocated matrix memory. Though the values were not used, this might raise segfault. for (int m = 450; m < 460; ++m) { for (int n = 8; n < 12; ++n) { MatrixXf M(m, n); VectorXf v1(n), r1(500); RowVectorXf v2(m), r2(16); M.setRandom(); v1.setRandom(); v2.setRandom(); for (int o = 0; o < 4; ++o) { r1.segment(o, m).noalias() = M * v1; VERIFY_IS_APPROX(r1.segment(o, m), M * MatrixXf(v1)); r2.segment(o, n).noalias() = v2 * M; VERIFY_IS_APPROX(r2.segment(o, n), MatrixXf(v2) * M); } } } } template EIGEN_DONT_INLINE Index test_compute_block_size(Index m, Index n, Index k) { Index mc(m), nc(n), kc(k); internal::computeProductBlockingSizes(kc, mc, nc); return kc + mc + nc; } template Index compute_block_size() { Index ret = 0; ret += test_compute_block_size(0, 1, 1); ret += test_compute_block_size(1, 0, 1); ret += test_compute_block_size(1, 1, 0); ret += test_compute_block_size(0, 0, 1); ret += test_compute_block_size(0, 1, 0); ret += test_compute_block_size(1, 0, 0); ret += test_compute_block_size(0, 0, 0); return ret; } template void aliasing_with_resize() { Index m = internal::random(10, 50); Index n = internal::random(10, 50); MatrixXd A, B, C(m, n), D(m, m); VectorXd a, b, c(n); C.setRandom(); D.setRandom(); c.setRandom(); double s = internal::random(1, 10); A = C; B = A * A.transpose(); A = A * A.transpose(); VERIFY_IS_APPROX(A, B); A = C; B = (A * A.transpose()) / s; A = (A * A.transpose()) / s; VERIFY_IS_APPROX(A, B); A = C; B = (A * A.transpose()) + D; A = (A * A.transpose()) + D; VERIFY_IS_APPROX(A, B); A = C; B = D + (A * A.transpose()); A = D + (A * A.transpose()); VERIFY_IS_APPROX(A, B); A = C; B = s * (A * A.transpose()); A = s * (A * A.transpose()); VERIFY_IS_APPROX(A, B); A = C; a = c; b = (A * a) / s; a = (A * a) / s; VERIFY_IS_APPROX(a, b); } template void bug_1308() { int n = 10; MatrixXd r(n, n); VectorXd v = VectorXd::Random(n); r = v * RowVectorXd::Ones(n); VERIFY_IS_APPROX(r, v.rowwise().replicate(n)); r = VectorXd::Ones(n) * v.transpose(); VERIFY_IS_APPROX(r, v.rowwise().replicate(n).transpose()); Matrix4d ones44 = Matrix4d::Ones(); Matrix4d m44 = Matrix4d::Ones() * Matrix4d::Ones(); VERIFY_IS_APPROX(m44, Matrix4d::Constant(4)); VERIFY_IS_APPROX(m44.noalias() = ones44 * Matrix4d::Ones(), Matrix4d::Constant(4)); VERIFY_IS_APPROX(m44.noalias() = ones44.transpose() * Matrix4d::Ones(), Matrix4d::Constant(4)); VERIFY_IS_APPROX(m44.noalias() = Matrix4d::Ones() * ones44, Matrix4d::Constant(4)); VERIFY_IS_APPROX(m44.noalias() = Matrix4d::Ones() * ones44.transpose(), Matrix4d::Constant(4)); typedef Matrix RMatrix4d; RMatrix4d r44 = Matrix4d::Ones() * Matrix4d::Ones(); VERIFY_IS_APPROX(r44, Matrix4d::Constant(4)); VERIFY_IS_APPROX(r44.noalias() = ones44 * Matrix4d::Ones(), Matrix4d::Constant(4)); VERIFY_IS_APPROX(r44.noalias() = ones44.transpose() * Matrix4d::Ones(), Matrix4d::Constant(4)); VERIFY_IS_APPROX(r44.noalias() = Matrix4d::Ones() * ones44, Matrix4d::Constant(4)); VERIFY_IS_APPROX(r44.noalias() = Matrix4d::Ones() * ones44.transpose(), Matrix4d::Constant(4)); VERIFY_IS_APPROX(r44.noalias() = ones44 * RMatrix4d::Ones(), Matrix4d::Constant(4)); VERIFY_IS_APPROX(r44.noalias() = ones44.transpose() * RMatrix4d::Ones(), Matrix4d::Constant(4)); VERIFY_IS_APPROX(r44.noalias() = RMatrix4d::Ones() * ones44, Matrix4d::Constant(4)); VERIFY_IS_APPROX(r44.noalias() = RMatrix4d::Ones() * ones44.transpose(), Matrix4d::Constant(4)); // RowVector4d r4; m44.setOnes(); r44.setZero(); VERIFY_IS_APPROX(r44.noalias() += m44.row(0).transpose() * RowVector4d::Ones(), ones44); r44.setZero(); VERIFY_IS_APPROX(r44.noalias() += m44.col(0) * RowVector4d::Ones(), ones44); r44.setZero(); VERIFY_IS_APPROX(r44.noalias() += Vector4d::Ones() * m44.row(0), ones44); r44.setZero(); VERIFY_IS_APPROX(r44.noalias() += Vector4d::Ones() * m44.col(0).transpose(), ones44); } EIGEN_DECLARE_TEST(product_extra) { for (int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(product_extra( MatrixXf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_2(product_extra( MatrixXd(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); CALL_SUBTEST_2(mat_mat_scalar_scalar_product()); CALL_SUBTEST_3(product_extra(MatrixXcf(internal::random(1, EIGEN_TEST_MAX_SIZE / 2), internal::random(1, EIGEN_TEST_MAX_SIZE / 2)))); CALL_SUBTEST_4(product_extra(MatrixXcd(internal::random(1, EIGEN_TEST_MAX_SIZE / 2), internal::random(1, EIGEN_TEST_MAX_SIZE / 2)))); CALL_SUBTEST_1(zero_sized_objects( MatrixXf(internal::random(1, EIGEN_TEST_MAX_SIZE), internal::random(1, EIGEN_TEST_MAX_SIZE)))); } CALL_SUBTEST_5(bug_127<0>()); CALL_SUBTEST_5(bug_817<0>()); CALL_SUBTEST_5(bug_1308<0>()); CALL_SUBTEST_6(unaligned_objects<0>()); CALL_SUBTEST_7(compute_block_size()); CALL_SUBTEST_7(compute_block_size()); CALL_SUBTEST_7(compute_block_size >()); CALL_SUBTEST_8(aliasing_with_resize()); }