The NEON `pcast` operators are all implemented and tested for existing
packets. This requires adding a `pcast(a,b,c,d,e,f,g,h)` for casting
between `int64_t` and `int8_t` in `GenericPacketMath.h`.
Removed incorrect `HasHalfPacket` definition for NEON's
`Packet2l`/`Packet2ul`.
Adjustments were also made to the `packetmath` tests. These include
- minor bug fixes for cast tests (i.e. 4:1 casts, only casting for
packets that are vectorizable)
- added 8:1 cast tests
- random number generation
- original had uninteresting 0 to 0 casts for many casts between
floating-point and integers, and exhibited signed overflow
undefined behavior
Tested:
```
$ aarch64-linux-gnu-g++ -static -I./ '-DEIGEN_TEST_PART_ALL=1' test/packetmath.cpp -o packetmath
$ adb push packetmath /data/local/tmp/
$ adb shell "/data/local/tmp/packetmath"
```
The use of the `packet_traits<>::HasCast` field is currently inconsistent with
`type_casting_traits<>`, and is unused apart from within
`test/packetmath.cpp`. In addition, those packetmath cast tests do not
currently reflect how casts are performed in practice: they ignore the
`SrcCoeffRatio` and `TgtCoeffRatio` fields, assuming a 1:1 ratio.
Here we remove the unsed `HasCast`, and modify the packet cast tests to
better reflect their usage.
- Use standard types in SYCL/PacketMath.h to avoid compilation problems on Windows
- Add EIGEN_HAS_CONSTEXPR to cxx11_tensor_argmax_sycl.cpp to fix build problems on Windows
This PR tries to fix an incorrect usage of `if defined(EIGEN_ARCH_PPC)`
in `Eigen/Core` header.
In `Eigen/src/Core/util/Macros.h`, EIGEN_ARCH_PPC was explicitly defined
as either 0 or 1. As a result `if defined(EIGEN_ARCH_PPC)` will always be true.
This causes issues when building on non PPC platform and `MatrixProduct.h` is not
available.
This fix changes `if defined(EIGEN_ARCH_PPC)` => `if EIGEN_ARCH_PPC`.
Signed-off-by: Yong Tang <yong.tang.github@outlook.com>
This change also contains a few minor cleanups:
1. Remove packet op pnot, which is not needed for anything other than pcmp_le_or_nan,
which can be done in other ways.
2. Remove the "HasInsert" enum, which is no longer needed since we removed the
corresponding packet ops.
3. Add faster pselect op for Packet4i when SSE4.1 is supported.
Among other things, this makes the fast transposeInPlace() method available for Matrix<bool>.
Run on ************** (72 X 2994 MHz CPUs); 2020-05-09T10:51:02.372347913-07:00
CPU: Intel Skylake Xeon with HyperThreading (36 cores) dL1:32KB dL2:1024KB dL3:24MB
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------------
BM_TransposeInPlace<float>/4 9.77 9.77 71670320
BM_TransposeInPlace<float>/8 21.9 21.9 31929525
BM_TransposeInPlace<float>/16 66.6 66.6 10000000
BM_TransposeInPlace<float>/32 243 243 2879561
BM_TransposeInPlace<float>/59 844 844 829767
BM_TransposeInPlace<float>/64 933 933 750567
BM_TransposeInPlace<float>/128 3944 3945 177405
BM_TransposeInPlace<float>/256 16853 16853 41457
BM_TransposeInPlace<float>/512 204952 204968 3448
BM_TransposeInPlace<float>/1k 1053889 1053861 664
BM_TransposeInPlace<bool>/4 14.4 14.4 48637301
BM_TransposeInPlace<bool>/8 36.0 36.0 19370222
BM_TransposeInPlace<bool>/16 31.5 31.5 22178902
BM_TransposeInPlace<bool>/32 111 111 6272048
BM_TransposeInPlace<bool>/59 626 626 1000000
BM_TransposeInPlace<bool>/64 428 428 1632689
BM_TransposeInPlace<bool>/128 1677 1677 417377
BM_TransposeInPlace<bool>/256 7126 7126 96264
BM_TransposeInPlace<bool>/512 29021 29024 24165
BM_TransposeInPlace<bool>/1k 116321 116330 6068
This commit applies the following changes:
- Moving the `scamLauncher` specialization inside internal namespace to fix compiler crash on TensorScan for SYCL backend.
- Replacing `SYCL/sycl.hpp` to `CL/sycl.hpp` in order to follow SYCL 1.2.1 standard.
- minor fixes: commenting out an unused variable to avoid compiler warnings.
Some architectures have no convinient way to determine cache sizes at
runtime. Eigen's GEBP kernel falls back to default cache values in this
case which might not be correct in all situations.
This patch introduces three preprocessor directives
`EIGEN_DEFAULT_L1_CACHE_SIZE`
`EIGEN_DEFAULT_L2_CACHE_SIZE`
`EIGEN_DEFAULT_L3_CACHE_SIZE`
to give users the possibility to set these default values explicitly.
This will allow us to define multiple packet types backed by the same vector type, e.g., __m128i.
Use this machanism to define packets for half and clean up the packet op implementations.
{uint8, int8} -> {int16, uint16, int32, uint32, float}
{uint16, int16} -> {int32, uint32, int64, uint64, float}
for NEON. These conversions were advertised as vectorized, but not actually implemented.
commainitialier unit-test never actually called `test_block_recursion`, which also was not correctly implemented and would have caused too deep template recursion.
The removed `finished()` call was responsible for enforcing that the
initializer was provided the correct number of values. Putting it back in
to restore previous behavior.
The error generated by the compiler was:
no matching function for call to 'maxi'
RealScalar threshold = numext::maxi(tol*tol*rhsNorm2,considerAsZero);
The important part in the following notes was:
candidate template ignored: deduced conflicting
types for parameter 'T'"
('codi::Multiply11<...>' vs. 'codi::ActiveReal<...>')
EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)
I am using CoDiPack to provide the RealScalar type.
This bug was introduced in bc000deaa Fix conjugate-gradient for very small rhs
- access violation when initializing 0x0 matrices
- exception can be thrown during stack unwind while comma-initializing a matrix if eigen_assert if configured to throw
See
<https://stackoverflow.com/questions/59709148/ensuring-that-eigen-uses-avx-vectorization-for-a-certain-operation>
for an explanation of the problem this solves.
In short, for some reason, before this commit the half-packet is
selected when the array / matrix size is not a multiple of
`unpacket_traits<PacketType>::size`, where `PacketType` starts out
being the full Packet.
For example, for some data of 100 `float`s, `Packet4f` will be
selected rather than `Packet8f`, because 100 is not a multiple of 8,
the size of `Packet8f`.
This commit switches to selecting the half-packet if the size is
less than the packet size, which seems to make more sense.
As I stated in the SO post I'm not sure that I'm understanding the
issue correctly, but this fix resolves the issue in my program. Moreover,
`make check` passes, with the exception of line 614 and 616 in
`test/packetmath.cpp`, which however also fail on master on my machine:
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i0, internal::pbessel_i0);
...
CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i1, internal::pbessel_i1);
This provides a new op that matches std::rint and previous behavior of
pround. Also adds corresponding unsupported/../Tensor op.
Performance is the same as e. g. floor (tested SSE/AVX).
* Adding Missing operations for vector comparison in SYCL. This caused compiler error for vector comparison when compiling SYCL
* Fixing the compiler error for placement new in TensorForcedEval.h This caused compiler error when compiling SYCL backend
* Reducing the SYCL warning by removing the abort function inside the kernel
* Adding Strong inline to functions inside SYCL interop.
This fixes deprecated-copy warnings when compiling with GCC>=9
Also protect some additional Base-constructors from getting called by user code code (#1587)
This change re-instates the fast rational approximation of the logistic function for float32 in Eigen (removed in 66f07efeae), but uses the more accurate approximation 1/(1+exp(-1)) ~= exp(x) below -9. The exponential is only calculated on the vectorized path if at least one element in the SIMD input vector is less than -9.
This change also contains a few improvements to speed up the original float specialization of logistic:
- Introduce EIGEN_PREDICT_{FALSE,TRUE} for __builtin_predict and use it to predict that the logistic-only path is most likely (~2-3% speedup for the common case).
- Carefully set the upper clipping point to the smallest x where the approximation evaluates to exactly 1. This saves the explicit clamping of the output (~7% speedup).
The increased accuracy for tanh comes at a cost of 10-20% depending on instruction set.
The benchmarks below repeated calls
u = v.logistic() (u = v.tanh(), respectively)
where u and v are of type Eigen::ArrayXf, have length 8k, and v contains random numbers in [-1,1].
Benchmark numbers for logistic:
Before:
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
SSE
BM_eigen_logistic_float 4467 4468 155835 model_time: 4827
AVX
BM_eigen_logistic_float 2347 2347 299135 model_time: 2926
AVX+FMA
BM_eigen_logistic_float 1467 1467 476143 model_time: 2926
AVX512
BM_eigen_logistic_float 805 805 858696 model_time: 1463
After:
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
SSE
BM_eigen_logistic_float 2589 2590 270264 model_time: 4827
AVX
BM_eigen_logistic_float 1428 1428 489265 model_time: 2926
AVX+FMA
BM_eigen_logistic_float 1059 1059 662255 model_time: 2926
AVX512
BM_eigen_logistic_float 673 673 1000000 model_time: 1463
Benchmark numbers for tanh:
Before:
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
SSE
BM_eigen_tanh_float 2391 2391 292624 model_time: 4242
AVX
BM_eigen_tanh_float 1256 1256 554662 model_time: 2633
AVX+FMA
BM_eigen_tanh_float 823 823 866267 model_time: 1609
AVX512
BM_eigen_tanh_float 443 443 1578999 model_time: 805
After:
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
SSE
BM_eigen_tanh_float 2588 2588 273531 model_time: 4242
AVX
BM_eigen_tanh_float 1536 1536 452321 model_time: 2633
AVX+FMA
BM_eigen_tanh_float 1007 1007 694681 model_time: 1609
AVX512
BM_eigen_tanh_float 471 471 1472178 model_time: 805
This also adds pset1frombits helper to Packet[24]d.
Makes round ~45% slower for SSE: 1.65µs ± 1% before vs 2.45µs ± 2% after,
stil an order of magnitude faster than scalar version: 33.8µs ± 2%.
The following commit introduces compile errors when running eigen with hipcc
2918f85ba9
hipcc errors out because it requies the device attribute on the methods within the TensorBlockV2ResourceRequirements struct instroduced by the commit above. The fix is to add the device attribute to those methods
77b447c24e
While providing a 50% speedup on Haswell+ processors, the large relative error outside [-18, 18] in this approximation causes problems, e.g., when computing gradients of activation functions like softplus in neural networks.
Recent changes have introduced the following build error when compiling with HIPCC
---------
unsupported/test/../../Eigen/src/Core/GenericPacketMath.h:254:58: error: 'ldexp': no overloaded function has restriction specifiers that are compatible with the ambient context 'pldexp'
---------
The fix for the error is to pick the math function(s) from the global namespace (where they are declared as device functions in the HIP header files) when compiling with HIPCC.
* Unifying all loadLocalTile from lhs and rhs to an extract_block function.
* Adding get_tensor operation which was missing in TensorContractionMapper.
* Adding the -D method missing from cmake for Disable_Skinny Contraction operation.
* Wrapping all the indices in TensorScanSycl into Scan parameter struct.
* Fixing typo in Device SYCL
* Unifying load to private register for tall/skinny no shared
* Unifying load to vector tile for tensor-vector/vector-tensor operation
* Removing all the LHS/RHS class for extracting data from global
* Removing Outputfunction from TensorContractionSkinnyNoshared.
* Combining the local memory version of tall/skinny and normal tensor contraction into one kernel.
* Combining the no-local memory version of tall/skinny and normal tensor contraction into one kernel.
* Combining General Tensor-Vector and VectorTensor contraction into one kernel.
* Making double buffering optional for Tensor contraction when local memory is version is used.
* Modifying benchmark to accept custom Reduction Sizes
* Disabling AVX optimization for SYCL backend on the host to allow SSE optimization to the host
* Adding Test for SYCL
* Modifying SYCL CMake
Add a new EIGEN_HAS_INTRINSIC_INT128 macro, and use this instead of __SIZEOF_INT128__. This fixes related issues with TensorIntDiv.h when building with Clang for Windows, where support for 128-bit integer arithmetic is advertised but broken in practice.
Confirm that install directory is identical
before and after this simplifying patch.
```bash
hg clone <<Eigen>>
mkdir eigen-bld
cd eigen-bld
cmake ../Eigen -DCMAKE_INSTALL_PREFIX:PATH=/tmp/bef
make install
find /tmp/pre_eigen_modernize >/tmp/bef
# Apply this patch
cmake ../Eigen -DCMAKE_INSTALL_PREFIX:PATH=/tmp/aft
make install
find /tmp/post_eigen_modernize |sed 's/post_e/pre_e/g' >/tmp/aft
diff /tmp/bef /tmp/aft
```
Ancient versions of CMake required else(), endif(), and similar block
termination commands to have arguments matching the command starting the block.
This is no longer the preferred style.
2. Simplify handling of special cases by taking advantage of the fact that the
builtin vrsqrt approximation handles negative, zero and +inf arguments correctly.
This speeds up the SSE and AVX implementations by ~20%.
3. Make the Newton-Raphson formula used for rsqrt more numerically robust:
Before: y = y * (1.5 - x/2 * y^2)
After: y = y * (1.5 - y * (x/2) * y)
Forming y^2 can overflow for very large or very small (denormalized) values of x, while x*y ~= 1. For AVX512, this makes it possible to compute accurate results for denormal inputs down to ~1e-42 in single precision.
4. Add a faster double precision implementation for Knights Landing using the vrsqrt28 instruction and a single Newton-Raphson iteration.
Benchmark results: https://bitbucket.org/snippets/rmlarsen/5LBq9o
The errors were introduced by this commit : d38e6fbc27
After the above mentioned commit, some of the tests started failing with the following error
```
Building HIPCC object unsupported/test/CMakeFiles/cxx11_tensor_reduction_gpu_5.dir/cxx11_tensor_reduction_gpu_5_generated_cxx11_tensor_reduction_gpu.cu.o
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_reduction_gpu.cu:16:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor:29:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/../SpecialFunctions:70:
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsHalf.h:28:22: error: call to 'erf' is ambiguous
return Eigen::half(Eigen::numext::erf(static_cast<float>(a)));
^~~~~~~~~~~~~~~~~~
/home/rocm-user/eigen/unsupported/test/../../Eigen/src/Core/MathFunctions.h:1600:7: note: candidate function [with T = float]
float erf(const float &x) { return ::erff(x); }
^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsImpl.h:1897:5: note: candidate function [with Scalar = float]
erf(const Scalar& x) {
^
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_reduction_gpu.cu:16:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor:29:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/../SpecialFunctions:75:
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/arch/GPU/GpuSpecialFunctions.h:87:23: error: call to 'erf' is ambiguous
return make_double2(erf(a.x), erf(a.y));
^~~
/home/rocm-user/eigen/unsupported/test/../../Eigen/src/Core/MathFunctions.h:1603:8: note: candidate function [with T = double]
double erf(const double &x) { return ::erf(x); }
^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsImpl.h:1897:5: note: candidate function [with Scalar = double]
erf(const Scalar& x) {
^
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_reduction_gpu.cu:16:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor:29:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/../SpecialFunctions:75:
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/arch/GPU/GpuSpecialFunctions.h:87:33: error: call to 'erf' is ambiguous
return make_double2(erf(a.x), erf(a.y));
^~~
/home/rocm-user/eigen/unsupported/test/../../Eigen/src/Core/MathFunctions.h:1603:8: note: candidate function [with T = double]
double erf(const double &x) { return ::erf(x); }
^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsImpl.h:1897:5: note: candidate function [with Scalar = double]
erf(const Scalar& x) {
^
3 errors generated.
```
This PR fixes the compile error by removing the "old" implementation for "erf" (assuming that the "new" implementation is what we want going forward. from a GPU point-of-view both implementations are the same).
This PR also fixes what seems like a cut-n-paste error in the aforementioned commit
- Split SpecialFunctions files in to a separate BesselFunctions file.
In particular add:
- Modified bessel functions of the second kind k0, k1, k0e, k1e
- Bessel functions of the first kind j0, j1
- Bessel functions of the second kind y0, y1
The fixes needed are
* adding EIGEN_DEVICE_FUNC attribute to a couple of funcs (else HIPCC will error out when non-device funcs are called from global/device funcs)
* switching to using ::<math_func> instead std::<math_func> (only for HIPCC) in cases where the std::<math_func> is not recognized as a device func by HIPCC
* removing an errant "j" from a testcase (don't know how that made it in to begin with!)
- Move colamd implementation in its own namespace to avoid polluting the internal namespace with Ok, Status, etc.
- Fix signed/unsigned warning
- move some ugly free functions as member functions
This actually fixes an issue in unit-test packetmath_2 with pcmp_eq when it is compiled with clang. When pcmp_eq(Packet4f,Packet4f) is used instead of pcmp_eq(Packet2d,Packet2d), the unit-test does not pass due to NaN on ref vector.
Depending on instruction set, significant speedups are observed for the vectorized path:
log1p wall time is reduced 60-93% (2.5x - 15x speedup)
expm1 wall time is reduced 0-85% (1x - 7x speedup)
The scalar path is slower by 20-30% due to the extra branch needed to handle +infinity correctly.
Full benchmarks measured on Intel(R) Xeon(R) Gold 6154 here: https://bitbucket.org/snippets/rmlarsen/MXBkpM
The vec_vsx_ld/vec_vsx_st builtins were wrongly used for aligned load/store. In fact, they perform unaligned memory access and, even when the address is 16-byte aligned, they are much slower (at least 2x) than their aligned counterparts.
For double/Packet2d vec_xl/vec_xst should be prefered over vec_ld/vec_st, although the latter works when casted to float/Packet4f.
Silencing some weird warning with throw but some GCC versions. Such warning are not thrown by Clang.
If no offset is given, them it should be zero.
Also passes full address to vec_vsx_ld/st builtins.
Removes userless _EIGEN_ALIGNED_PTR & _EIGEN_MASK_ALIGNMENT.
Removes unnecessary casts.
* an interface for SYCL buffers to behave as a non-dereferenceable pointer
* an interface for placeholder accessor to behave like a pointer on both host and device
1. Fix buggy pcmp_eq and unit test for half types.
2. Add unit test for pselect and add specializations for SSE 4.1, AVX512, and half types.
3. Get rid of FIXME: Implement faster pnegate for half by XOR'ing with a sign bit mask.
That was hurting users with compilers that would object to proceed with
that:
"""
./Eigen/src/Core/products/GeneralMatrixVector.h:356:10: error: declaration shadows a static data member of 'general_matrix_vector_product<type-parameter-0-0, type-parameter-0-1, type-parameter-0-2, 1, ConjugateLhs, type-parameter-0-4, type-parameter-0-5, ConjugateRhs, Version>' [-Werror,-Wshadow]
LhsPacketSize = Traits::LhsPacketSize,
^
./Eigen/src/Core/products/GeneralMatrixVector.h:307:22: note: previous declaration is here
static const Index LhsPacketSize = Traits::LhsPacketSize;
"""
This fixes compilation issues with RealScalar types that are not implicitly castable from Index (e.g. ceres Jet types).
Reported by Peter Anderson-Sprecher via eMail
Make clipping outside [-18:18] consistent for vectorized and non-vectorized paths of scalar_logistic_op<float>.
Approved-by: Gael Guennebaud <g.gael@free.fr>