Commit Graph

6415 Commits

Author SHA1 Message Date
Antonio Sanchez
03ebdf6acb Added missing NEON pcasts, update packetmath tests.
The NEON `pcast` operators are all implemented and tested for existing
packets. This requires adding a `pcast(a,b,c,d,e,f,g,h)` for casting
between `int64_t` and `int8_t` in `GenericPacketMath.h`.

Removed incorrect `HasHalfPacket`  definition for NEON's
`Packet2l`/`Packet2ul`.

Adjustments were also made to the `packetmath` tests. These include
- minor bug fixes for cast tests (i.e. 4:1 casts, only casting for
  packets that are vectorizable)
- added 8:1 cast tests
- random number generation
  - original had uninteresting 0 to 0 casts for many casts between
    floating-point and integers, and exhibited signed overflow
    undefined behavior

Tested:
```
$ aarch64-linux-gnu-g++ -static -I./ '-DEIGEN_TEST_PART_ALL=1' test/packetmath.cpp -o packetmath
$ adb push packetmath /data/local/tmp/
$ adb shell "/data/local/tmp/packetmath"
```
2020-06-21 09:32:31 -07:00
Teng Lu
386d809bde Support BFloat16 in Eigen 2020-06-20 19:16:24 +00:00
Pedro Caldeira
a475bf14d4 Fix pscatter and pgather for Altivec Complex double 2020-06-16 16:41:02 -03:00
David Tellenbach
c6c84ed961 Fix unused variable warning on Arm 2020-06-15 00:14:58 +02:00
Sebastien Boisvert
6228f27234 Fix #1818: SparseLU: add methods nnzL() and nnzU()
Now this compiles without errors:

$ clang++ -I ../../ test_sparseLU.cpp -std=c++03
2020-06-11 23:49:49 +00:00
Sebastien Boisvert
39cbd6578f Fix #1911: add benchmark for move semantics with fixed-size matrix
$ clang++ -O3 bench/bench_move_semantics.cpp -I. -std=c++11 \
        -o bench_move_semantics

$ ./bench_move_semantics
float copy semantics: 1755.97 ms
float move semantics: 55.063 ms
double copy semantics: 2457.65 ms
double move semantics: 55.034 ms
2020-06-11 23:43:25 +00:00
Antonio Sanchez
a7d2552af8 Remove HasCast and fix packetmath cast tests.
The use of the `packet_traits<>::HasCast` field is currently inconsistent with
`type_casting_traits<>`, and is unused apart from within
`test/packetmath.cpp`. In addition, those packetmath cast tests do not
currently reflect how casts are performed in practice: they ignore the
`SrcCoeffRatio` and `TgtCoeffRatio` fields, assuming a 1:1 ratio.

Here we remove the unsed `HasCast`, and modify the packet cast tests to
better reflect their usage.
2020-06-11 17:26:56 +00:00
Sebastien Boisvert
463ec86648 Fix #1757: remove the word 'suicide' 2020-06-11 00:56:54 +00:00
ShengYang1
b5d66b5e73 Implement scalar_cmp_with_cast_op 2020-06-09 08:12:07 +08:00
Rasmus Munk Larsen
c4059ffcb6 Fix static analyzer warning in SelfadjointProduct.h.
Fix compiler warnings in GeneralBlockPanelKernel.h.
2020-06-08 11:48:44 -07:00
Thales Sabino
1fcaaf460f Update FindComputeCpp.cmake to fix build problems on Windows
- Use standard types in SYCL/PacketMath.h to avoid compilation problems on Windows
- Add EIGEN_HAS_CONSTEXPR to cxx11_tensor_argmax_sycl.cpp to fix build problems on Windows
2020-06-05 20:51:20 +00:00
Rasmus Munk Larsen
c2ab36f47a Fix broken packetmath test for logistic on Arm. 2020-06-04 16:24:47 -07:00
Rasmus Munk Larsen
537e2b322f Fix typo in previous update to generic predux_any. 2020-06-04 22:25:05 +00:00
Rasmus Munk Larsen
fdc1cbdce3 Avoid implicit float equality comparison in generic predux_any, but use numext::not_equal_strict to avoid breaking builds that compile with -Werror=float-equal. 2020-06-04 22:15:56 +00:00
Rasmus Munk Larsen
daf9bbeca2 Fix compilation error in logistic packet op. 2020-06-03 00:57:41 +00:00
Gael Guennebaud
029a76e115 Bug #1777: make the scalar and packet path consistent for the logistic function + respective unit test 2020-05-31 00:53:37 +02:00
Gael Guennebaud
99b7f7cb9c Fix #556: warnings with mingw 2020-05-31 00:39:44 +02:00
Gael Guennebaud
867a756509 Fix #1833: compilation issue of "array!=scalar" with c++20 2020-05-30 23:53:58 +02:00
Gael Guennebaud
ab615e4114 Save one extra temporary when assigning a sparse product to a row-major sparse matrix 2020-05-30 23:15:12 +02:00
Kan Chen
8d1302f566 Add support for PacketBlock<Packet8s,4> and PacketBlock<Packet16uc,4> ptranspose on NEON 2020-05-29 00:33:45 +00:00
Yong Tang
8e1df5b082 Fix incorrect usage of if defined(EIGEN_ARCH_PPC) => if EIGEN_ARCH_PPC
This PR tries to fix an incorrect usage of `if defined(EIGEN_ARCH_PPC)`
in `Eigen/Core` header.

In `Eigen/src/Core/util/Macros.h`, EIGEN_ARCH_PPC was explicitly defined
as either 0 or 1. As a result `if defined(EIGEN_ARCH_PPC)` will always be true.
This causes issues when building on non PPC platform and `MatrixProduct.h` is not
available.

This fix changes `if defined(EIGEN_ARCH_PPC)` => `if EIGEN_ARCH_PPC`.

Signed-off-by: Yong Tang <yong.tang.github@outlook.com>
2020-05-28 05:53:44 -07:00
Kan Chen
4e7046063b Fix #1874: it works on both MSVC 2017 and other platforms. 2020-05-21 18:42:56 +08:00
Pedro Caldeira
2d67af2d2b Add pscatter for Packet16{u}c (int8) 2020-05-20 17:29:34 -03:00
Everton Constantino
8a7f360ec3 - Vectorizing MMA packing.
- Optimizing MMA kernel.
- Adding PacketBlock store to blas_data_mapper.
2020-05-19 19:24:11 +00:00
Rasmus Munk Larsen
a145e4adf5 Add newline at the end of StlIterators.h. 2020-05-15 20:36:00 +00:00
Gael Guennebaud
8ce9630ddb Fix #1874: workaround MSVC 2017 compilation issue. 2020-05-15 20:47:32 +02:00
Rasmus Munk Larsen
9b411757ab Add missing packet ops for bool, and make it pass the same packet op unit tests as other arithmetic types.
This change also contains a few minor cleanups:
  1. Remove packet op pnot, which is not needed for anything other than pcmp_le_or_nan,
     which can be done in other ways.
  2. Remove the "HasInsert" enum, which is no longer needed since we removed the
     corresponding packet ops.
  3. Add faster pselect op for Packet4i when SSE4.1 is supported.

Among other things, this makes the fast transposeInPlace() method available for Matrix<bool>.

Run on ************** (72 X 2994 MHz CPUs); 2020-05-09T10:51:02.372347913-07:00
CPU: Intel Skylake Xeon with HyperThreading (36 cores) dL1:32KB dL2:1024KB dL3:24MB
Benchmark                        Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------------
BM_TransposeInPlace<float>/4            9.77           9.77    71670320
BM_TransposeInPlace<float>/8           21.9           21.9     31929525
BM_TransposeInPlace<float>/16          66.6           66.6     10000000
BM_TransposeInPlace<float>/32         243            243        2879561
BM_TransposeInPlace<float>/59         844            844         829767
BM_TransposeInPlace<float>/64         933            933         750567
BM_TransposeInPlace<float>/128       3944           3945         177405
BM_TransposeInPlace<float>/256      16853          16853          41457
BM_TransposeInPlace<float>/512     204952         204968           3448
BM_TransposeInPlace<float>/1k     1053889        1053861            664
BM_TransposeInPlace<bool>/4            14.4           14.4     48637301
BM_TransposeInPlace<bool>/8            36.0           36.0     19370222
BM_TransposeInPlace<bool>/16           31.5           31.5     22178902
BM_TransposeInPlace<bool>/32          111            111        6272048
BM_TransposeInPlace<bool>/59          626            626        1000000
BM_TransposeInPlace<bool>/64          428            428        1632689
BM_TransposeInPlace<bool>/128        1677           1677         417377
BM_TransposeInPlace<bool>/256        7126           7126          96264
BM_TransposeInPlace<bool>/512       29021          29024          24165
BM_TransposeInPlace<bool>/1k       116321         116330           6068
2020-05-14 22:39:13 +00:00
Felipe Attanasio
d640276d31 Added support for reverse iterators for Vectorwise operations. 2020-05-14 22:38:20 +00:00
Christopher Moore
fa8fd4b4d5 Indexed view should have RowMajorBit when there is staticly a single row 2020-05-14 22:11:19 +00:00
Christopher Moore
a187ffea28 Resolve "IndexedView of a vector should allow linear access" 2020-05-13 19:24:42 +00:00
Pedro Caldeira
5fdc179241 Altivec template functions to better code reusability 2020-05-11 21:04:51 +00:00
mehdi-goli
d3e81db6c5 Eigen moved the scanLauncehr function inside the internal namespace.
This commit applies the following changes:
    - Moving the `scamLauncher` specialization inside internal namespace to fix compiler crash on TensorScan for SYCL backend.
    - Replacing  `SYCL/sycl.hpp` to `CL/sycl.hpp` in order to follow SYCL 1.2.1 standard.
    - minor fixes: commenting out an unused variable to avoid compiler warnings.
2020-05-11 16:10:33 +01:00
Rasmus Munk Larsen
c1d944dd91 Remove packet ops pinsertfirst and pinsertlast that are only used in a single place, and can be replaced by other ops when constructing the first/final packet in linspaced_op_impl::packetOp.
I cannot measure any performance changes for SSE, AVX, or AVX512.

name                                 old time/op             new time/op             delta
BM_LinSpace<float>/1                 1.63ns ± 0%             1.63ns ± 0%   ~             (p=0.762 n=5+5)
BM_LinSpace<float>/8                 4.92ns ± 3%             4.89ns ± 3%   ~             (p=0.421 n=5+5)
BM_LinSpace<float>/64                34.6ns ± 0%             34.6ns ± 0%   ~             (p=0.841 n=5+5)
BM_LinSpace<float>/512                217ns ± 0%              217ns ± 0%   ~             (p=0.421 n=5+5)
BM_LinSpace<float>/4k                1.68µs ± 0%             1.68µs ± 0%   ~             (p=1.000 n=5+5)
BM_LinSpace<float>/32k               13.3µs ± 0%             13.3µs ± 0%   ~             (p=0.905 n=5+4)
BM_LinSpace<float>/256k               107µs ± 0%              107µs ± 0%   ~             (p=0.841 n=5+5)
BM_LinSpace<float>/1M                 427µs ± 0%              427µs ± 0%   ~             (p=0.690 n=5+5)
2020-05-08 15:41:50 -07:00
David Tellenbach
5c4e19fbe7 Possibility to specify user-defined default cache sizes for GEBP kernel
Some architectures have no convinient way to determine cache sizes at
runtime. Eigen's GEBP kernel falls back to default cache values in this
case which might not be correct in all situations.

This patch introduces three preprocessor directives

  `EIGEN_DEFAULT_L1_CACHE_SIZE`
  `EIGEN_DEFAULT_L2_CACHE_SIZE`
  `EIGEN_DEFAULT_L3_CACHE_SIZE`

to give users the possibility to set these default values explicitly.
2020-05-08 12:54:36 +02:00
Rasmus Munk Larsen
225ab040e0 Remove unused packet op "palign".
Clean up a compiler warning in c++03 mode in AVX512/Complex.h.
2020-05-07 17:14:26 -07:00
Rasmus Munk Larsen
49f1aeb60d Remove traits declaring NEON vectorized casts that do not actually have packet op implementations. 2020-05-07 09:49:22 -07:00
Xiaoxiang Cao
a74a278abd Fix confusing template param name for Stride fwd decl. 2020-04-30 01:43:05 +00:00
Rasmus Munk Larsen
923ee9aba3 Fix the embarrassingly incomplete fix to the embarrassing bug in blocked transpose. 2020-04-29 17:27:36 +00:00
Rasmus Munk Larsen
a32923a439 Fix (embarrassing) bug in blocked transpose. 2020-04-29 17:02:27 +00:00
Rasmus Munk Larsen
1e41406c36 Add missing transpose in cleanup loop. Without it, we trip an assertion in debug mode. 2020-04-29 01:30:51 +00:00
Rasmus Munk Larsen
fbe7916c55 Fix compilation error with Clang on Android: _mm_extract_epi64 fails to compile. 2020-04-29 00:58:41 +00:00
Rasmus Munk Larsen
ab773c7e91 Extend support for Packet16b:
* Add ptranspose<*,4> to support matmul and add unit test for Matrix<bool> * Matrix<bool>
* work around a bug in slicing of Tensor<bool>.
* Add tensor tests

This speeds up matmul for boolean matrices by about 10x

name                            old time/op             new time/op             delta
BM_MatMul<bool>/8                267ns ± 0%              479ns ± 0%  +79.25%          (p=0.008 n=5+5)
BM_MatMul<bool>/32              6.42µs ± 0%             0.87µs ± 0%  -86.50%          (p=0.008 n=5+5)
BM_MatMul<bool>/64              43.3µs ± 0%              5.9µs ± 0%  -86.42%          (p=0.008 n=5+5)
BM_MatMul<bool>/128              315µs ± 0%               44µs ± 0%  -85.98%          (p=0.008 n=5+5)
BM_MatMul<bool>/256             2.41ms ± 0%             0.34ms ± 0%  -85.68%          (p=0.008 n=5+5)
BM_MatMul<bool>/512             18.8ms ± 0%              2.7ms ± 0%  -85.53%          (p=0.008 n=5+5)
BM_MatMul<bool>/1k               149ms ± 0%               22ms ± 0%  -85.40%          (p=0.008 n=5+5)
2020-04-28 16:12:47 +00:00
Rasmus Munk Larsen
b47c777993 Block transposeInPlace() when the matrix is real and square. This yields a large speedup because we transpose in registers (or L1 if we spill), instead of one packet at a time, which in the worst case makes the code write to the same cache line PacketSize times instead of once.
rmlarsen@rmlarsen4:.../eigen_bench/google3$ benchy --benchmarks=.*TransposeInPlace.*float.* --reference=srcfs experimental/users/rmlarsen/bench:matmul_bench
 10 / 10 [====================================================================================================================================================================================================================] 100.00% 2m50s
(Generated by http://go/benchy. Settings: --runs 5 --benchtime 1s --reference "srcfs" --benchmarks ".*TransposeInPlace.*float.*" experimental/users/rmlarsen/bench:matmul_bench)

name                                       old time/op             new time/op             delta
BM_TransposeInPlace<float>/4               9.84ns ± 0%             6.51ns ± 0%  -33.80%          (p=0.008 n=5+5)
BM_TransposeInPlace<float>/8               23.6ns ± 1%             17.6ns ± 0%  -25.26%          (p=0.016 n=5+4)
BM_TransposeInPlace<float>/16              78.8ns ± 0%             60.3ns ± 0%  -23.50%          (p=0.029 n=4+4)
BM_TransposeInPlace<float>/32               302ns ± 0%              229ns ± 0%  -24.40%          (p=0.008 n=5+5)
BM_TransposeInPlace<float>/59              1.03µs ± 0%             0.84µs ± 1%  -17.87%          (p=0.016 n=5+4)
BM_TransposeInPlace<float>/64              1.20µs ± 0%             0.89µs ± 1%  -25.81%          (p=0.008 n=5+5)
BM_TransposeInPlace<float>/128             8.96µs ± 0%             3.82µs ± 2%  -57.33%          (p=0.008 n=5+5)
BM_TransposeInPlace<float>/256              152µs ± 3%               17µs ± 2%  -89.06%          (p=0.008 n=5+5)
BM_TransposeInPlace<float>/512              837µs ± 1%              208µs ± 0%  -75.15%          (p=0.008 n=5+5)
BM_TransposeInPlace<float>/1k              4.28ms ± 2%             1.08ms ± 2%  -74.72%          (p=0.008 n=5+5)
2020-04-28 16:08:16 +00:00
Pedro Caldeira
29f0917a43 Add support to vector instructions to Packet16uc and Packet16c 2020-04-27 12:48:08 -03:00
Rasmus Munk Larsen
e80ec24357 Remove unused packet op "preduxp". 2020-04-23 18:17:14 +00:00
René Wagner
0aebe19aca BooleanRedux.h: Add more EIGEN_DEVICE_FUNC qualifiers.
This enables operator== on Eigen matrices in device code.
2020-04-23 17:25:08 +02:00
Pedro Caldeira
0c67b855d2 Add Packet8s and Packet8us to support signed/unsigned int16/short Altivec vector operations 2020-04-21 14:52:46 -03:00
Rasmus Munk Larsen
e8f40e4670 Fix bug in ptrue for Packet16b. 2020-04-20 21:45:10 +00:00
Rasmus Munk Larsen
2f6ddaa25c Add partial vectorization for matrices and tensors of bool. This speeds up boolean operations on Tensors by up to 25x.
Benchmark numbers for the logical and of two NxN tensors:

name                                               old time/op             new time/op             delta
BM_booleanAnd_1T/3   [using 1 threads]             14.6ns ± 0%             14.4ns ± 0%   -0.96%
BM_booleanAnd_1T/4   [using 1 threads]             20.5ns ±12%              9.0ns ± 0%  -56.07%
BM_booleanAnd_1T/7   [using 1 threads]             41.7ns ± 0%             10.5ns ± 0%  -74.87%
BM_booleanAnd_1T/8   [using 1 threads]             52.1ns ± 0%             10.1ns ± 0%  -80.59%
BM_booleanAnd_1T/10  [using 1 threads]             76.3ns ± 0%             13.8ns ± 0%  -81.87%
BM_booleanAnd_1T/15  [using 1 threads]              167ns ± 0%               16ns ± 0%  -90.45%
BM_booleanAnd_1T/16  [using 1 threads]              188ns ± 0%               16ns ± 0%  -91.57%
BM_booleanAnd_1T/31  [using 1 threads]              667ns ± 0%               34ns ± 0%  -94.83%
BM_booleanAnd_1T/32  [using 1 threads]              710ns ± 0%               35ns ± 0%  -95.01%
BM_booleanAnd_1T/64  [using 1 threads]             2.80µs ± 0%             0.11µs ± 0%  -95.93%
BM_booleanAnd_1T/128 [using 1 threads]             11.2µs ± 0%              0.4µs ± 0%  -96.11%
BM_booleanAnd_1T/256 [using 1 threads]             44.6µs ± 0%              2.5µs ± 0%  -94.31%
BM_booleanAnd_1T/512 [using 1 threads]              178µs ± 0%               10µs ± 0%  -94.35%
BM_booleanAnd_1T/1k  [using 1 threads]              717µs ± 0%               78µs ± 1%  -89.07%
BM_booleanAnd_1T/2k  [using 1 threads]             2.87ms ± 0%             0.31ms ± 1%  -89.08%
BM_booleanAnd_1T/4k  [using 1 threads]             11.7ms ± 0%              1.9ms ± 4%  -83.55%
BM_booleanAnd_1T/10k [using 1 threads]             70.3ms ± 0%             17.2ms ± 4%  -75.48%
2020-04-20 20:16:28 +00:00
Rasmus Munk Larsen
5ab87d8aba Move eigen_packet_wrapper to GenericPacketMath.h and use it for SSE/AVX/AVX512 as it is already used for NEON.
This will allow us to define multiple packet types backed by the same vector type, e.g., __m128i.
Use this machanism to define packets for half and clean up the packet op implementations.
2020-04-15 18:17:19 +00:00
Rasmus Munk Larsen
4aae8ac693 Fix typo in TypeCasting.h 2020-04-14 02:55:51 +00:00
Rasmus Munk Larsen
1d674003b2 Fix big in vectorized casting of
{uint8, int8} -> {int16, uint16, int32, uint32, float} 
 {uint16, int16} -> {int32, uint32, int64, uint64, float} 

for NEON. These conversions were advertised as vectorized, but not actually implemented.
2020-04-14 02:11:06 +00:00
Christoph Hertzberg
d46d726e9d CommaInitializer wrongfully asserted for 0-sized blocks
commainitialier unit-test never actually called `test_block_recursion`, which also was not correctly implemented and would have caused too deep template recursion.
2020-04-13 16:41:20 +02:00
Antonio Sanchez
c854e189e6 Fixed commainitializer test.
The removed `finished()` call was responsible for enforcing that the
initializer was provided the correct number of values. Putting it back in
to restore previous behavior.
2020-04-10 13:53:26 -07:00
Rasmus Munk Larsen
f0577a2bfd Speed up matrix multiplication for small to medium size matrices by using half- or quarter-packet vectorized loads in gemm_pack_rhs if they have size 4, instead of dropping down the the scalar path.
Benchmark measurements below are for computing ```c.noalias() = a.transpose() * b;``` for square RowMajor matrices of varying size.

Measured improvement with AVX+FMA:

name                           old time/op             new time/op             delta
BM_MatMul_ATB/8                 139ns ± 1%              129ns ± 1%   -7.49%          (p=0.008 n=5+5)
BM_MatMul_ATB/32               1.46µs ± 1%             1.22µs ± 0%  -16.72%          (p=0.008 n=5+5)
BM_MatMul_ATB/64               8.43µs ± 1%             7.41µs ± 0%  -12.04%          (p=0.008 n=5+5)
BM_MatMul_ATB/128              56.8µs ± 1%             52.9µs ± 1%   -6.83%          (p=0.008 n=5+5)
BM_MatMul_ATB/256               407µs ± 1%              395µs ± 3%   -2.94%          (p=0.032 n=5+5)
BM_MatMul_ATB/512              3.27ms ± 3%             3.18ms ± 1%     ~             (p=0.056 n=5+5)


Measured improvement for AVX512:

name                          old time/op             new time/op             delta
BM_MatMul_ATB/8                167ns ± 1%              154ns ± 1%   -7.63%          (p=0.008 n=5+5)
BM_MatMul_ATB/32              1.08µs ± 1%             0.83µs ± 3%  -23.58%          (p=0.008 n=5+5)
BM_MatMul_ATB/64              6.21µs ± 1%             5.06µs ± 1%  -18.47%          (p=0.008 n=5+5)
BM_MatMul_ATB/128             36.1µs ± 2%             31.3µs ± 1%  -13.32%          (p=0.008 n=5+5)
BM_MatMul_ATB/256              263µs ± 2%              242µs ± 2%   -7.92%          (p=0.008 n=5+5)
BM_MatMul_ATB/512             1.95ms ± 2%             1.91ms ± 2%     ~             (p=0.095 n=5+5)
BM_MatMul_ATB/1k              15.4ms ± 4%             14.8ms ± 2%     ~             (p=0.095 n=5+5)
2020-04-07 22:09:51 +00:00
Antonio Sanchez
9dda5eb7d2 Missing struct definition in NumTraits 2020-04-07 09:01:11 -07:00
Akshay Naresh Modi
bcc0e9e15c Add numeric_limits min and max for bool
This will allow (among other things) computation of argmax and argmin of bool tensors
2020-04-06 23:38:57 +00:00
Bernardo Bahia Monteiro
54a0a9c9dd
Bugfix: conjugate_gradient did not compile with lazy-evaluated RealScalar
The error generated by the compiler was:

    no matching function for call to 'maxi'
    RealScalar threshold = numext::maxi(tol*tol*rhsNorm2,considerAsZero);

The important part in the following notes was:

    candidate template ignored: deduced conflicting
    types for parameter 'T'"
    ('codi::Multiply11<...>' vs. 'codi::ActiveReal<...>')
    EIGEN_ALWAYS_INLINE T maxi(const T& x, const T& y)

I am using CoDiPack to provide the RealScalar type.
This bug was introduced in bc000deaa Fix conjugate-gradient for very small rhs
2020-03-29 19:44:12 -04:00
Rasmus Munk Larsen
393dbd8ee9 Fix bug in 52d54278be 2020-03-27 16:42:18 +00:00
Joel Holdsworth
6d2dbfc453 NEON: Fixed MSVC types definitions 2020-03-26 20:19:58 +00:00
Joel Holdsworth
52d54278be Additional NEON packet-math operations 2020-03-26 20:18:19 +00:00
Everton Constantino
deb93ed1bf Adhere to recommended load/store intrinsics for pp64le 2020-03-23 15:18:15 -03:00
Everton Constantino
5afdaa473a Fixing float32's pround halfway criteria to match STL's criteria. 2020-03-21 22:30:54 -05:00
Alessio M
96cd1ff718 Fixed:
- access violation when initializing 0x0 matrices
- exception can be thrown during stack unwind while comma-initializing a matrix if eigen_assert if configured to throw
2020-03-21 05:11:21 +00:00
dlazenby
cc954777f2 Update VectorwiseOp.h to allow Plugins similar to MatrixBase.h or ArrayBase.h 2020-03-20 19:30:01 +00:00
Masaki Murooka
55ecd58a3c Bug https://gitlab.com/libeigen/eigen/-/issues/1415: add missing EIGEN_DEVICE_FUNC to diagonal_product_evaluator_base. 2020-03-20 13:37:37 +09:00
Rasmus Munk Larsen
4da2c6b197 Remove reference to non-existent unary_op_base class. 2020-03-19 18:23:06 +00:00
Rasmus Munk Larsen
eda90baf35 Add missing arguments to numext::absdiff(). 2020-03-19 18:16:55 +00:00
Joel Holdsworth
d5c665742b Add absolute_difference coefficient-wise binary Array function 2020-03-19 17:45:20 +00:00
Everton Constantino
6ff5a14091 Reenabling packetmath unsigned tests, adding dummy pabs for relevant unsigned
types.
2020-03-19 17:31:49 +00:00
Joel Holdsworth
232f904082 Add shift_left<N> and shift_right<N> coefficient-wise unary Array functions 2020-03-19 17:24:06 +00:00
Joel Holdsworth
54aa8fa186 Implement integer square-root for NEON 2020-03-19 17:05:13 +00:00
Allan Leal
37ccb86916 Update NullaryFunctors.h 2020-03-16 11:59:02 +00:00
Deven Desai
7158ed4e0e Fixing HIP breakage caused by the recent commit that introduces Packet4h2 as the Eigen::Half packet type 2020-03-12 01:06:24 +00:00
Joel Holdsworth
d53ae40f7b NEON: Added int64_t and uint64_t packet math 2020-03-10 22:46:19 +00:00
Joel Holdsworth
4b9ecf2924 NEON: Added int8_t and uint8_t packet math 2020-03-10 22:46:19 +00:00
Joel Holdsworth
ceaabd4e16 NEON: Added int16_t and uint16_t packet math 2020-03-10 22:46:19 +00:00
Joel Holdsworth
d5d3cf9339 NEON: Added uint32_t packet math 2020-03-10 22:46:19 +00:00
Joel Holdsworth
eacf97f727 NEON: Implemented half-size vectors 2020-03-10 22:46:19 +00:00
Joel Holdsworth
5f411b729e NEON: Set packet_traits<double> flags 2020-03-10 22:46:19 +00:00
Sami Kama
b733b8b680 remove duplicate pset1 for half and add some comments about why we need expose pmul/add/div/min/max on host 2020-03-10 20:28:43 +00:00
Rasmus Munk Larsen
52a2fbbb00 Revert "avoid selecting half-packets when unnecessary"
This reverts commit 5ca10480b0
2020-02-25 01:07:43 +00:00
Rasmus Munk Larsen
235bcfe08d Revert "Pick full packet unconditionally when EIGEN_UNALIGNED_VECTORIZE"
This reverts commit 44df2109c8
2020-02-25 01:07:28 +00:00
Rasmus Munk Larsen
d7a42eade6 Revert "do not pick full-packet if it'd result in more operations"
This reverts commit e9cc0cd353
2020-02-25 01:07:15 +00:00
Tobias Bosch
f0ce88cff7 Include <sstream> explicitly, and don't rely on the implicit include via <complex>.
This implicit dependency does no longer exist in a recent llbm release (sha 78be61871704).
2020-02-24 23:09:36 +00:00
Francesco Mazzoli
e9cc0cd353 do not pick full-packet if it'd result in more operations
See comment and
<https://gitlab.com/libeigen/eigen/merge_requests/46#note_270622952>.
2020-02-07 18:16:16 +01:00
Francesco Mazzoli
44df2109c8 Pick full packet unconditionally when EIGEN_UNALIGNED_VECTORIZE
See comment for details.
2020-02-07 18:16:16 +01:00
Francesco Mazzoli
5ca10480b0 avoid selecting half-packets when unnecessary
See
<https://stackoverflow.com/questions/59709148/ensuring-that-eigen-uses-avx-vectorization-for-a-certain-operation>
for an explanation of the problem this solves.

In short, for some reason, before this commit the half-packet is
selected when the array / matrix size is not a multiple of
`unpacket_traits<PacketType>::size`, where `PacketType` starts out
being the full Packet.

For example, for some data of 100 `float`s, `Packet4f` will be
selected rather than `Packet8f`, because 100 is not a multiple of 8,
the size of `Packet8f`.

This commit switches to selecting the half-packet if the size is
less than the packet size, which seems to make more sense.

As I stated in the SO post I'm not sure that I'm understanding the
issue correctly, but this fix resolves the issue in my program. Moreover,
`make check` passes, with the exception of line 614 and 616 in
`test/packetmath.cpp`, which however also fail on master on my machine:

    CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i0, internal::pbessel_i0);
    ...
    CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i1, internal::pbessel_i1);
2020-02-07 18:16:16 +01:00
Rasmus Munk Larsen
6601abce86 Remove rogue include in TypeCasting.h. Meta.h is already included by the top-level header in Eigen/Core. 2020-01-14 21:03:53 +00:00
Everton Constantino
5a8b97b401 Switching unpacket_traits<Packet4i> to vectorizable=true. 2020-01-13 16:08:20 -03:00
Everton Constantino
42838c28b8 Adding correct cache sizes for PPC architecture. 2020-01-13 16:58:14 +00:00
Rasmus Munk Larsen
e1ecfc162d call Explicitly ::rint and ::rintf for targets without c++11. Without this, the Windows build breaks when trying to compile numext::rint<double>. 2020-01-10 21:14:08 +00:00
Joel Holdsworth
da5a7afed0 Improvements to the tidiness and completeness of the NEON implementation 2020-01-10 18:31:15 +00:00
Anuj Rawat
452371cead Fix for gcc build error when using Eigen headers with AVX512 2020-01-10 18:05:42 +00:00
mehdi-goli
601f89dfd0 Adding RInt vector support for SYCL. 2020-01-10 18:00:36 +00:00
Rasmus Munk Larsen
9254974115 Don't add EIGEN_DEVICE_FUNC to random() since ::rand is not available in Cuda. 2020-01-09 21:23:09 +00:00
Rasmus Munk Larsen
a3ec89b5bd Add missing EIGEN_DEVICE_FUNC annotations in MathFunctions.h. 2020-01-09 21:06:34 +00:00
Rasmus Munk Larsen
e6fcee995b Don't use the rational approximation to the logistic function on GPUs as it appears to be slightly slower. 2020-01-09 00:04:26 +00:00
Rasmus Munk Larsen
4217a9f090 The upper limits for where to use the rational approximation to the logistic function were not set carefully enough in the original commit, and some arguments would cause the function to return values greater than 1. This change set the versions found by scanning all floating point numbers (using std::nextafterf()). 2020-01-08 22:21:37 +00:00
Ilya Tokar
19876ced76 Bug #1785: Introduce numext::rint.
This provides a new op that matches std::rint and previous behavior of
pround. Also adds corresponding unsupported/../Tensor op.
Performance is the same as e. g. floor (tested SSE/AVX).
2020-01-07 21:22:44 +00:00
mehdi-goli
d0ae052da4 [SYCL Backend]
* Adding Missing operations for vector comparison in SYCL. This caused compiler error for vector comparison when compiling SYCL
 * Fixing the compiler error for placement new in TensorForcedEval.h This caused compiler error when compiling SYCL backend
 * Reducing the SYCL warning by  removing the abort function inside the kernel
 * Adding Strong inline to functions inside SYCL interop.
2020-01-07 15:13:37 +00:00
Janek Kozicki
00de570793 Fix -Werror -Wfloat-conversion warning. 2019-12-23 23:52:44 +01:00
Christoph Hertzberg
870e53c0f2 Bug #1788: Fix rule-of-three violations inside the stable modules.
This fixes deprecated-copy warnings when compiling with GCC>=9
Also protect some additional Base-constructors from getting called by user code code (#1587)
2019-12-19 17:30:11 +01:00
Christoph Hertzberg
72166d0e6e Fix some maybe-unitialized warnings 2019-12-18 18:26:20 +01:00
Rasmus Munk Larsen
7252163335 Add default definition for EIGEN_PREDICT_* 2019-12-16 22:31:59 +00:00
Rasmus Munk Larsen
a566074480 Improve accuracy of fast approximate tanh and the logistic functions in Eigen, such that they preserve relative accuracy to within a few ULPs where their function values tend to zero (around x=0 for tanh, and for large negative x for the logistic function).
This change re-instates the fast rational approximation of the logistic function for float32 in Eigen (removed in 66f07efeae), but uses the more accurate approximation 1/(1+exp(-1)) ~= exp(x) below -9. The exponential is only calculated on the vectorized path if at least one element in the SIMD input vector is less than -9.

This change also contains a few improvements to speed up the original float specialization of logistic:
  - Introduce EIGEN_PREDICT_{FALSE,TRUE} for __builtin_predict and use it to predict that the logistic-only path is most likely (~2-3% speedup for the common case).
  - Carefully set the upper clipping point to the smallest x where the approximation evaluates to exactly 1. This saves the explicit clamping of the output (~7% speedup).

The increased accuracy for tanh comes at a cost of 10-20% depending on instruction set.

The benchmarks below repeated calls

   u = v.logistic()  (u = v.tanh(), respectively)

where u and v are of type Eigen::ArrayXf, have length 8k, and v contains random numbers in [-1,1].

Benchmark numbers for logistic:

Before:
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
SSE
BM_eigen_logistic_float        4467           4468         155835  model_time: 4827
AVX
BM_eigen_logistic_float        2347           2347         299135  model_time: 2926
AVX+FMA
BM_eigen_logistic_float        1467           1467         476143  model_time: 2926
AVX512
BM_eigen_logistic_float         805            805         858696  model_time: 1463

After:
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
SSE
BM_eigen_logistic_float        2589           2590         270264  model_time: 4827
AVX
BM_eigen_logistic_float        1428           1428         489265  model_time: 2926
AVX+FMA
BM_eigen_logistic_float        1059           1059         662255  model_time: 2926
AVX512
BM_eigen_logistic_float         673            673        1000000  model_time: 1463

Benchmark numbers for tanh:

Before:
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
SSE
BM_eigen_tanh_float        2391           2391         292624  model_time: 4242
AVX
BM_eigen_tanh_float        1256           1256         554662  model_time: 2633
AVX+FMA
BM_eigen_tanh_float         823            823         866267  model_time: 1609
AVX512
BM_eigen_tanh_float         443            443        1578999  model_time: 805

After:
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
SSE
BM_eigen_tanh_float        2588           2588         273531  model_time: 4242
AVX
BM_eigen_tanh_float        1536           1536         452321  model_time: 2633
AVX+FMA
BM_eigen_tanh_float        1007           1007         694681  model_time: 1609
AVX512
BM_eigen_tanh_float         471            471        1472178  model_time: 805
2019-12-16 21:33:42 +00:00
Christoph Hertzberg
8e5da71466 Resolve double-promotion warnings when compiling with clang.
`sin` was calling `sin(double)` instead of `std::sin(float)`
2019-12-13 22:46:40 +01:00
Ilya Tokar
06e99aaf40 Bug 1785: fix pround on x86 to use the same rounding mode as std::round.
This also adds pset1frombits helper to Packet[24]d.
Makes round ~45% slower for SSE: 1.65µs ± 1% before vs 2.45µs ± 2% after,
stil an order of magnitude faster than scalar version: 33.8µs ± 2%.
2019-12-12 17:38:53 -05:00
Rasmus Munk Larsen
73a8d572f5 Clamp tanh approximation outside [-c, c] where c is the smallest value where the approximation is exactly +/-1. Without FMA, c = 7.90531110763549805, with FMA c = 7.99881172180175781. 2019-12-12 19:34:25 +00:00
Srinivas Vasudevan
88062b7fed Fix implementation of complex expm1. Add tests that fail with previous implementation, but pass with the current one. 2019-12-12 01:56:54 +00:00
Joel Holdsworth
3c0ef9f394 IO: Fixed printing of char and unsigned char matrices 2019-12-11 18:22:57 +00:00
Joel Holdsworth
e87af0ed37 Added Eigen::numext typedefs for uint8_t, int8_t, uint16_t and int16_t 2019-12-11 18:22:57 +00:00
Gael Guennebaud
15b3bcfca0 Bug 1786: fix compilation with MSVC 2019-12-11 16:16:38 +01:00
Deven Desai
c49f0d851a Fix for HIP breakage detected on 191210
The following commit introduces compile errors when running eigen with hipcc

2918f85ba9

hipcc errors out because it requies the device attribute on the methods within the TensorBlockV2ResourceRequirements struct instroduced by the commit above. The fix is to add the device attribute to those methods
2019-12-10 22:14:05 +00:00
Gael Guennebaud
8fbe0e4699 Update old links to bitbucket to point to gitlab.com 2019-12-04 10:57:07 +01:00
Rasmus Larsen
cacf433975 Merged in anshuljl/eigen-2/Anshul-Jaiswal/update-configurevectorizationh-to-not-op-1573079916090 (pull request PR-754)
Update ConfigureVectorization.h to not optimize fp16 routines when compiling with cuda.

Approved-by: Deven Desai <deven.desai.amd@gmail.com>
2019-12-04 00:45:42 +00:00
Gael Guennebaud
6358599ecb Fix QuaternionBase::cast for quaternion map and wrapper. 2019-12-03 14:51:14 +01:00
Gael Guennebaud
7745f69013 bug #1776: fix vector-wise STL iterator's operator-> using a proxy as pointer type.
This changeset fixes also the value_type definition.
2019-12-03 14:40:15 +01:00
Rasmus Munk Larsen
66f07efeae Revert the specialization for scalar_logistic_op<float> introduced in:
77b447c24e


While providing a 50% speedup on Haswell+ processors, the large relative error outside [-18, 18] in this approximation causes problems, e.g., when computing gradients of activation functions like softplus in neural networks.
2019-12-02 17:00:58 -08:00
Rasmus Larsen
3b15373bb3 Merged in ezhulenev/eigen-02 (pull request PR-767)
Fix shadow warnings in AlignedBox and SparseBlock
2019-12-02 18:23:11 +00:00
Deven Desai
312c8e77ff Fix for the HIP build+test errors.
Recent changes have introduced the following build error when compiling with HIPCC

---------

unsupported/test/../../Eigen/src/Core/GenericPacketMath.h:254:58: error:  'ldexp':  no overloaded function has restriction specifiers that are compatible with the ambient context 'pldexp'

---------

The fix for the error is to pick the math function(s) from the global namespace (where they are declared as device functions in the HIP header files) when compiling with HIPCC.
2019-12-02 17:41:32 +00:00
Mehdi Goli
00f32752f7 [SYCL] Rebasing the SYCL support branch on top of the Einge upstream master branch.
* Unifying all loadLocalTile from lhs and rhs to an extract_block function.
* Adding get_tensor operation which was missing in TensorContractionMapper.
* Adding the -D method missing from cmake for Disable_Skinny Contraction operation.
* Wrapping all the indices in TensorScanSycl into Scan parameter struct.
* Fixing typo in Device SYCL
* Unifying load to private register for tall/skinny no shared
* Unifying load to vector tile for tensor-vector/vector-tensor operation
* Removing all the LHS/RHS class for extracting data from global
* Removing Outputfunction from TensorContractionSkinnyNoshared.
* Combining the local memory version of tall/skinny and normal tensor contraction into one kernel.
* Combining the no-local memory version of tall/skinny and normal tensor contraction into one kernel.
* Combining General Tensor-Vector and VectorTensor contraction into one kernel.
* Making double buffering optional for Tensor contraction when local memory is version is used.
* Modifying benchmark to accept custom Reduction Sizes
* Disabling AVX optimization for SYCL backend on the host to allow SSE optimization to the host
* Adding Test for SYCL
* Modifying SYCL CMake
2019-11-28 10:08:54 +00:00
Eugene Zhulenev
82a47338df Fix shadow warnings in AlignedBox and SparseBlock 2019-11-27 16:22:27 -08:00
Rasmus Munk Larsen
ea51a9eace Add missing EIGEN_DEVICE_FUNC attribute to template specializations for pexp to fix GPU build. 2019-11-27 10:17:09 -08:00
Rasmus Munk Larsen
5a3ebda36b Fix warning due to missing cast for exponent arguments for std::frexp and std::lexp. 2019-11-26 16:18:29 -08:00
Joel Holdsworth
86eb41f1cb SparseRef: Fixed alignment warning on ARM GCC 2019-11-07 14:34:06 +00:00
Anshul Jaiswal
c1a67cb5af Update ConfigureVectorization.h to not optimize fp16 routines when compiling with cuda. 2019-11-06 22:40:38 +00:00
Rasmus Munk Larsen
cc3d0e6a40 Add EIGEN_HAS_INTRINSIC_INT128 macro
Add a new EIGEN_HAS_INTRINSIC_INT128 macro, and use this instead of __SIZEOF_INT128__. This fixes related issues with TensorIntDiv.h when building with Clang for Windows, where support for 128-bit integer arithmetic is advertised but broken in practice.
2019-11-06 14:24:33 -08:00
Rasmus Munk Larsen
ee404667e2 Rollback or PR-746 and partial rollback of 668ab3fc47
.

std::array is still not supported in CUDA device code on Windows.
2019-11-05 17:17:58 -08:00
Hans Johnson
e78ed6e7f3 COMP: Simplify install commands for Eigen
Confirm that install directory is identical
before and after this simplifying patch.

```bash
hg clone <<Eigen>>
mkdir eigen-bld
cd eigen-bld
cmake ../Eigen -DCMAKE_INSTALL_PREFIX:PATH=/tmp/bef
make install
find /tmp/pre_eigen_modernize >/tmp/bef

#  Apply this patch

cmake ../Eigen -DCMAKE_INSTALL_PREFIX:PATH=/tmp/aft
make install
find /tmp/post_eigen_modernize |sed 's/post_e/pre_e/g' >/tmp/aft
diff /tmp/bef /tmp/aft
```
2019-11-17 15:14:25 -06:00
Gael Guennebaud
e5778b87b9 Fix duplicate symbol linking error. 2019-11-20 17:23:19 +01:00
Hans Johnson
6fb3e5f176 STYLE: Remove CMake-language block-end command arguments
Ancient versions of CMake required else(), endif(), and similar block
termination commands to have arguments matching the command starting the block.
This is no longer the preferred style.
2019-10-31 11:36:27 -05:00
Rasmus Munk Larsen
f1e8307308 1. Fix a bug in psqrt and make it return 0 for +inf arguments.
2. Simplify handling of special cases by taking advantage of the fact that the
   builtin vrsqrt approximation handles negative, zero and +inf arguments correctly.
   This speeds up the SSE and AVX implementations by ~20%.
3. Make the Newton-Raphson formula used for rsqrt more numerically robust:

Before: y = y * (1.5 - x/2 * y^2)
After: y = y * (1.5 - y * (x/2) * y)

Forming y^2 can overflow for very large or very small (denormalized) values of x, while x*y ~= 1. For AVX512, this makes it possible to compute accurate results for denormal inputs down to ~1e-42 in single precision.

4. Add a faster double precision implementation for Knights Landing using the vrsqrt28 instruction and a single Newton-Raphson iteration.

Benchmark results: https://bitbucket.org/snippets/rmlarsen/5LBq9o
2019-11-15 17:09:46 -08:00
Gael Guennebaud
2cb2915f90 bug #1744: fix compilation with MSVC 2017 and AVX512, plog1p/pexpm1 require plog/pexp, but the later was disabled on some compilers 2019-11-15 13:39:51 +01:00
Gael Guennebaud
8af045a287 bug #1774: fix VectorwiseOp::begin()/end() return types regarding constness. 2019-11-14 11:45:52 +01:00
Sakshi Goynar
75b4c0a3e0 PR 751: Fixed compilation issue when compiling using MSVC with /arch:AVX512 flag 2019-10-31 16:09:16 -07:00
Gael Guennebaud
8496f86f84 Enable CompleteOrthogonalDecomposition::pseudoInverse with non-square fixed-size matrices. 2019-11-13 21:16:53 +01:00
Gael Guennebaud
71aa53dd6d Disable AVX on broken xcode versions. See PR 748.
Patch adapted from Hans Johnson's PR 748.
2019-11-12 11:40:38 +01:00
Eugene Zhulenev
e7ed4bd388 Remove internal::smart_copy and replace with std::copy 2019-10-29 11:25:24 -07:00
Gael Guennebaud
e7d8ba747c bug #1752: make is_convertible equivalent to the std c++11 equivalent and fallback to std::is_convertible when c++11 is enabled. 2019-10-10 17:41:47 +02:00
Gael Guennebaud
196de2efe3 Explicitly bypass resize and memmoves when there is already the exact right number of elements available. 2019-10-08 21:44:33 +02:00
Gael Guennebaud
d1def335dc fix one more possible conflicts with real/imag 2019-10-08 16:19:10 +02:00
Gael Guennebaud
87427d2eaa PR 719: fix real/imag namespace conflict 2019-10-08 09:15:17 +02:00
Rasmus Munk Larsen
fab4e3a753 Address comments on Chebyshev evaluation code:
1. Use pmadd when possible.
2. Add casts to avoid c++03 warnings.
2019-10-02 12:48:17 -07:00
Rasmus Munk Larsen
bd0fac456f Prevent infinite loop in the nvcc compiler while unrolling the recurrent templates for Chebyshev polynomial evaluation. 2019-10-01 13:15:30 -07:00
Gael Guennebaud
9549ba8313 Fix perf issue in SimplicialLDLT::solve for complexes (again, m_diag is real) 2019-10-01 12:54:25 +02:00
Gael Guennebaud
c8b2c603b0 Fix speed issue with SimplicialLDLT for complexes: the diagonal is real! 2019-09-30 16:14:34 +02:00
Rasmus Munk Larsen
13ef08e5ac Move implementation of vectorized error function erf() to SpecialFunctionsImpl.h. 2019-09-27 13:56:04 -07:00
Eugene Zhulenev
0c845e28c9 Fix erf in c++03 2019-09-25 11:31:45 -07:00
Deven Desai
5e186b1987 Fix for the HIP build+test errors.
The errors were introduced by this commit : d38e6fbc27


After the above mentioned commit, some of the tests started failing with the following error


```
Building HIPCC object unsupported/test/CMakeFiles/cxx11_tensor_reduction_gpu_5.dir/cxx11_tensor_reduction_gpu_5_generated_cxx11_tensor_reduction_gpu.cu.o
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_reduction_gpu.cu:16:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor:29:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/../SpecialFunctions:70:
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsHalf.h:28:22: error: call to 'erf' is ambiguous
  return Eigen::half(Eigen::numext::erf(static_cast<float>(a)));
                     ^~~~~~~~~~~~~~~~~~
/home/rocm-user/eigen/unsupported/test/../../Eigen/src/Core/MathFunctions.h:1600:7: note: candidate function [with T = float]
float erf(const float &x) { return ::erff(x); }
      ^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsImpl.h:1897:5: note: candidate function [with Scalar = float]
    erf(const Scalar& x) {
    ^
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_reduction_gpu.cu:16:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor:29:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/../SpecialFunctions:75:
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/arch/GPU/GpuSpecialFunctions.h:87:23: error: call to 'erf' is ambiguous
  return make_double2(erf(a.x), erf(a.y));
                      ^~~
/home/rocm-user/eigen/unsupported/test/../../Eigen/src/Core/MathFunctions.h:1603:8: note: candidate function [with T = double]
double erf(const double &x) { return ::erf(x); }
       ^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsImpl.h:1897:5: note: candidate function [with Scalar = double]
    erf(const Scalar& x) {
    ^
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_reduction_gpu.cu:16:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor:29:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/../SpecialFunctions:75:
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/arch/GPU/GpuSpecialFunctions.h:87:33: error: call to 'erf' is ambiguous
  return make_double2(erf(a.x), erf(a.y));
                                ^~~
/home/rocm-user/eigen/unsupported/test/../../Eigen/src/Core/MathFunctions.h:1603:8: note: candidate function [with T = double]
double erf(const double &x) { return ::erf(x); }
       ^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsImpl.h:1897:5: note: candidate function [with Scalar = double]
    erf(const Scalar& x) {
    ^
3 errors generated.
```


This PR fixes the compile error by removing the "old" implementation for "erf" (assuming that the "new" implementation is what we want going forward. from a GPU point-of-view both implementations are the same).

This PR also fixes what seems like a cut-n-paste error in the aforementioned commit
2019-09-25 15:39:13 +00:00
Rasmus Larsen
d38e6fbc27 Merged in rmlarsen/eigen (pull request PR-704)
Add generic PacketMath implementation of the Error Function (erf).
2019-09-24 23:40:29 +00:00
Eugene Zhulenev
ef9dfee7bd Tensor block evaluation V2 support for unary/binary/broadcsting 2019-09-24 12:52:45 -07:00
Christoph Hertzberg
efd9867ff0 bug #1746: Removed implementation of standard copy-constructor and standard copy-assign-operator from PermutationMatrix and Transpositions to allow malloc-less std::move. Added unit-test to rvalue_types 2019-09-24 11:09:58 +02:00
Rasmus Munk Larsen
6de5ed08d8 Add generic PacketMath implementation of the Error Function (erf). 2019-09-19 12:48:30 -07:00
Rasmus Munk Larsen
28b6786498 Fix build on setups without AVX512DQ. 2019-09-19 12:36:09 -07:00
Deven Desai
e02d429637 Fix for the HIP build+test errors.
The errors were introduced by this commit : 6e215cf109


The fix is switching to using ::<math_func> instead std::<math_func> when compiling for GPU
2019-09-18 18:44:20 +00:00
Srinivas Vasudevan
6e215cf109 Add Bessel functions to SpecialFunctions.
- Split SpecialFunctions files in to a separate BesselFunctions file.

In particular add:
    - Modified bessel functions of the second kind k0, k1, k0e, k1e
    - Bessel functions of the first kind j0, j1
    - Bessel functions of the second kind y0, y1
2019-09-14 12:16:47 -04:00
Srinivas Vasudevan
facdec5aa7 Add packetized versions of i0e and i1e special functions.
- In particular refactor the i0e and i1e code so scalar and vectorized path share code.
  - Move chebevl to GenericPacketMathFunctions.


A brief benchmark with building Eigen with FMA, AVX and AVX2 flags

Before:

CPU: Intel Haswell with HyperThreading (6 cores)
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
BM_eigen_i0e_double/1            57.3           57.3     10000000
BM_eigen_i0e_double/8           398            398        1748554
BM_eigen_i0e_double/64         3184           3184         218961
BM_eigen_i0e_double/512       25579          25579          27330
BM_eigen_i0e_double/4k       205043         205042           3418
BM_eigen_i0e_double/32k     1646038        1646176            422
BM_eigen_i0e_double/256k   13180959       13182613             53
BM_eigen_i0e_double/1M     52684617       52706132             10
BM_eigen_i0e_float/1             28.4           28.4     24636711
BM_eigen_i0e_float/8             75.7           75.7      9207634
BM_eigen_i0e_float/64           512            512        1000000
BM_eigen_i0e_float/512         4194           4194         166359
BM_eigen_i0e_float/4k         32756          32761          21373
BM_eigen_i0e_float/32k       261133         261153           2678
BM_eigen_i0e_float/256k     2087938        2088231            333
BM_eigen_i0e_float/1M       8380409        8381234             84
BM_eigen_i1e_double/1            56.3           56.3     10000000
BM_eigen_i1e_double/8           397            397        1772376
BM_eigen_i1e_double/64         3114           3115         223881
BM_eigen_i1e_double/512       25358          25361          27761
BM_eigen_i1e_double/4k       203543         203593           3462
BM_eigen_i1e_double/32k     1613649        1613803            428
BM_eigen_i1e_double/256k   12910625       12910374             54
BM_eigen_i1e_double/1M     51723824       51723991             10
BM_eigen_i1e_float/1             28.3           28.3     24683049
BM_eigen_i1e_float/8             74.8           74.9      9366216
BM_eigen_i1e_float/64           505            505        1000000
BM_eigen_i1e_float/512         4068           4068         171690
BM_eigen_i1e_float/4k         31803          31806          21948
BM_eigen_i1e_float/32k       253637         253692           2763
BM_eigen_i1e_float/256k     2019711        2019918            346
BM_eigen_i1e_float/1M       8238681        8238713             86


After:

CPU: Intel Haswell with HyperThreading (6 cores)
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
BM_eigen_i0e_double/1            15.8           15.8     44097476
BM_eigen_i0e_double/8            99.3           99.3      7014884
BM_eigen_i0e_double/64          777            777         886612
BM_eigen_i0e_double/512        6180           6181         100000
BM_eigen_i0e_double/4k        48136          48140          14678
BM_eigen_i0e_double/32k      385936         385943           1801
BM_eigen_i0e_double/256k    3293324        3293551            228
BM_eigen_i0e_double/1M     12423600       12424458             57
BM_eigen_i0e_float/1             16.3           16.3     43038042
BM_eigen_i0e_float/8             30.1           30.1     23456931
BM_eigen_i0e_float/64           169            169        4132875
BM_eigen_i0e_float/512         1338           1339         516860
BM_eigen_i0e_float/4k         10191          10191          68513
BM_eigen_i0e_float/32k        81338          81337           8531
BM_eigen_i0e_float/256k      651807         651984           1000
BM_eigen_i0e_float/1M       2633821        2634187            268
BM_eigen_i1e_double/1            16.2           16.2     42352499
BM_eigen_i1e_double/8           110            110        6316524
BM_eigen_i1e_double/64          822            822         851065
BM_eigen_i1e_double/512        6480           6481         100000
BM_eigen_i1e_double/4k        51843          51843          10000
BM_eigen_i1e_double/32k      414854         414852           1680
BM_eigen_i1e_double/256k    3320001        3320568            212
BM_eigen_i1e_double/1M     13442795       13442391             53
BM_eigen_i1e_float/1             17.6           17.6     41025735
BM_eigen_i1e_float/8             35.5           35.5     19597891
BM_eigen_i1e_float/64           240            240        2924237
BM_eigen_i1e_float/512         1424           1424         485953
BM_eigen_i1e_float/4k         10722          10723          65162
BM_eigen_i1e_float/32k        86286          86297           8048
BM_eigen_i1e_float/256k      691821         691868           1000
BM_eigen_i1e_float/1M       2777336        2777747            256


This shows anywhere from a 50% to 75% improvement on these operations.

I've also benchmarked without any of these flags turned on, and got similar
performance to before (if not better).

Also tested packetmath.cpp + special_functions to ensure no regressions.
2019-09-11 18:34:02 -07:00
Srinivas Vasudevan
b052ec6992 Merged eigen/eigen into default 2019-09-11 18:01:54 -07:00
Deven Desai
cdb377d0cb Fix for the HIP build+test errors introduced by the ndtri support.
The fixes needed are
 * adding EIGEN_DEVICE_FUNC attribute to a couple of funcs (else HIPCC will error out when non-device funcs are called from global/device funcs)
 * switching to using ::<math_func> instead std::<math_func> (only for HIPCC) in cases where the std::<math_func> is not recognized as a device func by HIPCC
 * removing an errant "j" from a testcase (don't know how that made it in to begin with!)
2019-09-06 16:03:49 +00:00
Gael Guennebaud
747c6a51ca bug #1736: fix compilation issue with A(all,{1,2}).col(j) by implementing true compile-time "if" for block_evaluator<>::coeff(i)/coeffRef(i) 2019-09-11 15:40:07 +02:00
Gael Guennebaud
031f17117d bug #1741: fix self-adjoint*matrix, triangular*matrix, and triangular^1*matrix with a destination having a non-trivial inner-stride 2019-09-11 15:04:25 +02:00
Gael Guennebaud
459b2bcc08 Fix compilation of BLAS backend and frontend 2019-09-11 10:02:37 +02:00
Gael Guennebaud
afa8d13532 Fix some implicit literal to Scalar conversions in SparseCore 2019-09-11 00:03:07 +02:00
Gael Guennebaud
c06e6fd115 bug #1741: fix SelfAdjointView::rankUpdate and product to triangular part for destination with non-trivial inner stride 2019-09-10 23:29:52 +02:00
Gael Guennebaud
ea0d5dc956 bug #1741: fix C.noalias() = A*C; with C.innerStride()!=1 2019-09-10 16:25:24 +02:00
Gael Guennebaud
17226100c5 Fix a circular dependency regarding pshift* functions and GenericPacketMathFunctions.
Another solution would have been to make pshift* fully generic template functions with
partial specialization which is always a mess in c++03.
2019-09-06 09:26:04 +02:00
Gael Guennebaud
55b63d4ea3 Fix compilation without vector engine available (e.g., x86 with SSE disabled):
-> ppolevl is required by ndtri even for the scalar path
2019-09-05 18:16:46 +02:00
Srinivas Vasudevan
a9cf823db7 Merged eigen/eigen 2019-09-04 23:50:52 -04:00
Gael Guennebaud
e6c183f8fd Fix doc issues regarding ndtri 2019-09-04 23:00:21 +02:00
Gael Guennebaud
5702a57926 Fix possible warning regarding strict equality comparisons 2019-09-04 22:57:04 +02:00
Srinivas Vasudevan
99036a3615 Merging from eigen/eigen. 2019-09-03 15:34:47 -04:00
Gael Guennebaud
8e7e3d9bc8 Makes Scalar/RealScalar typedefs public in Pardiso's wrappers (see PR 688) 2019-09-03 13:09:03 +02:00
Srinivas Vasudevan
e38dd48a27 PR 681: Add ndtri function, the inverse of the normal distribution function. 2019-08-12 19:26:29 -04:00
Eugene Zhulenev
f59bed7a13 Change typedefs from private to protected to fix MSVC compilation 2019-09-03 19:11:36 -07:00
Srinivas Vasudevan
18ceb3413d Add ndtri function, the inverse of the normal distribution function. 2019-08-12 19:26:29 -04:00
Rasmus Munk Larsen
d55d392e7b Fix bugs in log1p and expm1 where repeated using statements would clobber each other.
Add specializations for complex types since std::log1p and std::exp1m do not support complex.
2019-08-08 16:27:32 -07:00
Gael Guennebaud
15f3d9d272 More colamd cleanup:
- Move colamd implementation in its own namespace to avoid polluting the internal namespace with Ok, Status, etc.
- Fix signed/unsigned warning
- move some ugly free functions as member functions
2019-09-03 00:50:51 +02:00
Anshul Jaiswal
a4d1a6cd7d Eigen_Colamd.h updated to replace constexpr with consts and enums. 2019-08-17 05:29:23 +00:00
Anshul Jaiswal
283558face Ordering.h edited to fix dependencies on Eigen_Colamd.h 2019-08-15 20:21:56 +00:00
Anshul Jaiswal
39f30923c2 Eigen_Colamd.h edited replacing macros with constexprs and functions. 2019-08-15 20:15:19 +00:00
Anshul Jaiswal
0a6b553ecf Eigen_Colamd.h edited online with Bitbucket replacing constant #defines with const definitions 2019-07-21 04:53:31 +00:00
Michael Grupp
6e17491f45 Fix typo in Umeyama method documentation 2019-07-17 11:20:41 +00:00
Christoph Hertzberg
e0f5a2a456 Remove {} accidentally added in previous commit 2019-07-18 20:22:17 +02:00
Christoph Hertzberg
ea6d7eb32f Move variadic constructors outside #ifndef EIGEN_PARSED_BY_DOXYGEN block, to make it actually appear in the generated documentation. 2019-07-12 19:46:37 +02:00
Christoph Hertzberg
c2671e5315 Build deprecated snippets with -DEIGEN_NO_DEPRECATED_WARNING
Also, document LinSpaced only where it is implemented
2019-07-12 19:43:32 +02:00
Rasmus Munk Larsen
23b958818e Fix compiler for unsigned integers. 2019-07-09 11:18:25 -07:00
Anshul Jaiswal
fab51d133e Updated Eigen_Colamd.h, namespacing macros ALIVE & DEAD as COLAMD_ALIVE & COLAMD_DEAD
to prevent conflicts with other libraries / code.
2019-06-08 21:09:06 +00:00
Rasmus Munk Larsen
f6c51d9209 Fix missing header inclusion and colliding definitions for half type casting, which broke
build with -march=native on Haswell/Skylake.
2019-08-30 14:03:29 -07:00
Rasmus Munk Larsen
1187bb65ad Add more tests for corner cases of log1p and expm1. Add handling of infinite arguments to log1p such that log1p(inf) = inf. 2019-08-28 12:20:21 -07:00
Rasmus Munk Larsen
9aba527405 Revert changes to std_falback::log1p that broke handling of arguments less than -1. Fix packet op accordingly. 2019-08-27 15:35:29 -07:00
Rasmus Munk Larsen
b021cdea6d Clean up float16 a.k.a. Eigen::half support in Eigen. Move the definition of half to Core/arch/Default and move arch-specific packet ops to their respective sub-directories. 2019-08-27 11:30:31 -07:00
Christoph Hertzberg
2fb24384c9 Merged in jaopaulolc/eigen (pull request PR-679)
Fixes for Altivec/VSX and compilation with clang on PowerPC
2019-08-22 15:57:33 +00:00
João P. L. de Carvalho
5ac7984ffa Fix debug macros in p{load,store}u 2019-08-14 11:59:12 -06:00
João P. L. de Carvalho
db9147ae40 Add missing pcmp_XX methods for double/Packet2d
This actually fixes an issue in unit-test packetmath_2 with pcmp_eq when it is compiled with clang. When pcmp_eq(Packet4f,Packet4f) is used instead of pcmp_eq(Packet2d,Packet2d), the unit-test does not pass due to NaN on ref vector.
2019-08-14 10:37:39 -06:00
Rasmus Munk Larsen
a3298b22ec Implement vectorized versions of log1p and expm1 in Eigen using Kahan's formulas, and change the scalar implementations to properly handle infinite arguments.
Depending on instruction set, significant speedups are observed for the vectorized path:
log1p wall time is reduced 60-93% (2.5x - 15x speedup)
expm1 wall time is reduced 0-85% (1x - 7x speedup)

The scalar path is slower by 20-30% due to the extra branch needed to handle +infinity correctly.

Full benchmarks measured on Intel(R) Xeon(R) Gold 6154 here: https://bitbucket.org/snippets/rmlarsen/MXBkpM
2019-08-12 13:53:28 -07:00
João P. L. de Carvalho
787f6ef025 Fix packed load/store for PowerPC's VSX
The vec_vsx_ld/vec_vsx_st builtins were wrongly used for aligned load/store. In fact, they perform unaligned memory access and, even when the address is 16-byte aligned, they are much slower (at least 2x) than their aligned counterparts.

For double/Packet2d vec_xl/vec_xst should be prefered over vec_ld/vec_st, although the latter works when casted to float/Packet4f.

Silencing some weird warning with throw but some GCC versions. Such warning are not thrown by Clang.
2019-08-09 16:02:55 -06:00
João P. L. de Carvalho
4d29aa0294 Fix offset argument of ploadu/pstoreu for Altivec
If no offset is given, them it should be zero.

Also passes full address to vec_vsx_ld/st builtins.

Removes userless _EIGEN_ALIGNED_PTR & _EIGEN_MASK_ALIGNMENT.

Removes unnecessary casts.
2019-08-09 15:59:26 -06:00
João P. L. de Carvalho
66d073c38e bug #1718: Add cast to successfully compile with clang on PowerPC
Ignoring -Wc11-extensions warnings thrown by clang at Altivec/PacketMath.h
2019-08-09 15:56:26 -06:00
Justin Carpentier
ffaf658ecd PR 655: Fix missing Eigen namespace in Macros 2019-06-05 09:51:59 +02:00
Mehdi Goli
0b24e1cb5c [SYCL] Adding the SYCL memory model. The SYCL memory model provides :
* an interface for SYCL buffers to behave as a non-dereferenceable pointer
  * an interface for placeholder accessor to behave like a pointer on both host and device
2019-07-01 16:02:30 +01:00
Rasmus Munk Larsen
8053eeb51e Fix CUDA compilation error for pselect<half>. 2019-06-28 12:07:29 -07:00
Mehdi Goli
16a56b2ddd [SYCL] This PR adds the minimum modifications to Eigen core required to run Eigen unsupported modules on devices supporting SYCL.
* Adding SYCL memory model
* Enabling/Disabling SYCL  backend in Core
*  Supporting Vectorization
2019-06-27 12:25:09 +01:00
Deven Desai
ba506d5bd2 fix for a ROCm/HIP specificcompile errror introduced by a recent commit. 2019-06-22 00:06:05 +00:00
Rasmus Munk Larsen
c9394d7a0e Remove extra "one" in comment. 2019-06-20 16:23:19 -07:00
Rasmus Munk Larsen
b8f8dac4eb Update comment as suggested by tra@google.com. 2019-06-20 16:18:37 -07:00
Rasmus Munk Larsen
e5e63c2cad Fix grammar. 2019-06-20 16:03:59 -07:00
Rasmus Munk Larsen
302a404b7e Added comment explaining the surprising EIGEN_COMP_CLANG && !EIGEN_COMP_NVCC clause. 2019-06-20 15:59:08 -07:00
Rasmus Munk Larsen
b5237f53b1 Fix CUDA build on Mac. 2019-06-20 15:44:14 -07:00
Rasmus Munk Larsen
988f24b730 Various fixes for packet ops.
1. Fix buggy pcmp_eq and unit test for half types.
2. Add unit test for pselect and add specializations for SSE 4.1, AVX512, and half types.
3. Get rid of FIXME: Implement faster pnegate for half by XOR'ing with a sign bit mask.
2019-06-20 11:47:49 -07:00
Christoph Hertzberg
e0be7f30e1 bug #1724: Mask buggy warnings with g++-7
(grafted from 427f2f66d6
)
2019-06-14 14:57:46 +02:00
Rasmus Munk Larsen
6d432eae5d Make is_valid_index_type return false for float and double when EIGEN_HAS_TYPE_TRAITS is off. 2019-06-05 16:42:27 -07:00
Rasmus Munk Larsen
f715f6e816 Add workaround for choosing the right include files with FP16C support with clang. 2019-06-05 13:36:37 -07:00
Rasmus Munk Larsen
b08527b0c1 Clean up CUDA/NVCC version macros and their use in Eigen, and a few other CUDA build failures. 2019-05-31 15:26:06 -07:00
Deven Desai
2c38930161 fix for HIP build errors that were introduced by a commit earlier this week 2019-05-24 14:25:32 +00:00
Gustavo Lima Chaves
56bc4974fb GEMV: remove double declaration of constant.
That was hurting users with compilers that would object to proceed with
that:

"""
./Eigen/src/Core/products/GeneralMatrixVector.h:356:10: error: declaration shadows a static data member of 'general_matrix_vector_product<type-parameter-0-0, type-parameter-0-1, type-parameter-0-2, 1, ConjugateLhs, type-parameter-0-4, type-parameter-0-5, ConjugateRhs, Version>' [-Werror,-Wshadow]
         LhsPacketSize = Traits::LhsPacketSize,
         ^
./Eigen/src/Core/products/GeneralMatrixVector.h:307:22: note: previous declaration is here
  static const Index LhsPacketSize = Traits::LhsPacketSize;
"""
2019-05-23 14:50:29 -07:00
Christoph Hertzberg
ac21a08c13 Cast Index to RealScalar
This fixes compilation issues with RealScalar types that are not implicitly castable from Index (e.g. ceres Jet types).
Reported by Peter Anderson-Sprecher via eMail
2019-05-23 15:31:12 +02:00
Rasmus Munk Larsen
3eb5ad0ed0 Enable support for F16C with Clang. The required intrinsics were added here: https://reviews.llvm.org/D16177
and are part of LLVM 3.8.0.
2019-05-20 17:19:20 -07:00
Rasmus Larsen
e92486b8c3 Merged in rmlarsen/eigen (pull request PR-643)
Make Eigen build with cuda 10 and clang.

Approved-by: Justin Lebar <justin.lebar@gmail.com>
2019-05-20 17:02:39 +00:00
Gael Guennebaud
cc7ecbb124 Merged in scramsby/eigen (pull request PR-646)
Eigen: Fix MSVC C++17 language standard detection logic
2019-05-20 07:19:10 +00:00
Rasmus Larsen
bf9cbed8d0 Merged in glchaves/eigen (pull request PR-635)
Speed up GEMV on AVX-512 builds, just as done for GEBP previously.

Approved-by: Rasmus Larsen <rmlarsen@google.com>
2019-05-17 19:40:50 +00:00
Rasmus Munk Larsen
ab0a30e429 Make Eigen build with cuda 10 and clang. 2019-05-15 13:32:15 -07:00
Christoph Hertzberg
5f32b79edc Collapsed revision from PR-641
* SparseLU.h - corrected example, it didn't compile
* Changed encoding back to UTF8
2019-05-13 19:02:30 +02:00
Anuj Rawat
ad372084f5 Removing unused API to fix compile error in TensorFlow due to
AVX512VL, AVX512BW usage
2019-05-12 14:43:10 +00:00
Christoph Hertzberg
4ccd1ece92 bug #1707: Fix deprecation warnings, or disable warnings when testing deprecated functions 2019-05-10 14:57:05 +02:00
Rasmus Munk Larsen
d3ef7cf03e Fix build with clang on Windows. 2019-05-09 11:07:04 -07:00
Eugene Zhulenev
45b40d91ca Fix AVX512 & GCC 6.3 compilation 2019-05-07 16:44:55 -07:00
Christoph Hertzberg
cca76c272c Restore C++03 compatibility 2019-05-06 16:18:22 +02:00
Rasmus Munk Larsen
8e33844fc7 Fix traits for scalar_logistic_op. 2019-05-03 15:49:09 -07:00
Scott Ramsby
ff06ef7584 Eigen: Fix MSVC C++17 language standard detection logic
To detect C++17 support, use _MSVC_LANG macro instead of _MSC_VER. _MSC_VER can indicate whether the current compiler version could support the C++17 language standard, but not whether that standard is actually selected (i.e. via /std:c++17).
See these web pages for more details:
https://devblogs.microsoft.com/cppblog/msvc-now-correctly-reports-__cplusplus/
https://docs.microsoft.com/en-us/cpp/preprocessor/predefined-macros
2019-05-03 14:14:09 -07:00
Eugene Zhulenev
e9f0eb8a5e Add masked_store_available to unpacket_traits 2019-05-02 14:52:58 -07:00
Eugene Zhulenev
96e30e936a Add masked pstoreu for Packet16h 2019-05-02 14:11:01 -07:00
Eugene Zhulenev
b4010f02f9 Add masked pstoreu to AVX and AVX512 PacketMath 2019-05-02 13:14:18 -07:00
Gael Guennebaud
578407f42f Fix regression in changeset ae33e866c7 2019-05-02 15:45:21 +02:00
Gustavo Lima Chaves
d4dcb71bcb Speed up GEMV on AVX-512 builds, just as done for GEBP previously.
We take advantage of smaller SIMD registers as well, in that case.

Gains up to 3x for select input sizes.
2019-04-26 14:12:39 -07:00
Andy May
ae33e866c7 Fix compilation with PGI version 19 2019-04-25 21:23:19 +01:00
Gael Guennebaud
665ac22cc6 Merged in ezhulenev/eigen-01 (pull request PR-632)
Fix doxygen warnings
2019-04-25 20:02:20 +00:00
Eugene Zhulenev
8ead5bb3d8 Fix doxygen warnings to enable statis code analysis 2019-04-24 12:42:28 -07:00
Eugene Zhulenev
07355d47c6 Get rid of SequentialLinSpacedReturnType deprecation warnings in DenseBase.h 2019-04-24 11:01:35 -07:00
Rasmus Munk Larsen
144ca33321 Remove deprecation annotation from typedef Eigen::Index Index, as it would generate too many build warnings. 2019-04-24 08:50:07 -07:00
Eugene Zhulenev
a7b7f3ca8a Add missing EIGEN_DEPRECATED annotations to deprecated functions and fix few other doxygen warnings 2019-04-23 17:23:19 -07:00
Eugene Zhulenev
68a2a8c445 Use packet ops instead of AVX2 intrinsics 2019-04-23 11:41:02 -07:00
Anuj Rawat
8c7a6feb8e Adding lowlevel APIs for optimized RHS packet load in TensorFlow
SpatialConvolution

Low-level APIs are added in order to optimized packet load in gemm_pack_rhs
in TensorFlow SpatialConvolution. The optimization is for scenario when a
packet is split across 2 adjacent columns. In this case we read it as two
'partial' packets and then merge these into 1. Currently this only works for
Packet16f (AVX512) and Packet8f (AVX2). We plan to add this for other
packet types (such as Packet8d) also.

This optimization shows significant speedup in SpatialConvolution with
certain parameters. Some examples are below.

Benchmark parameters are specified as:
Batch size, Input dim, Depth, Num of filters, Filter dim

Speedup numbers are specified for number of threads 1, 2, 4, 8, 16.

AVX512:

Parameters                  | Speedup (Num of threads: 1, 2, 4, 8, 16)
----------------------------|------------------------------------------
128,   24x24,  3, 64,   5x5 |2.18X, 2.13X, 1.73X, 1.64X, 1.66X
128,   24x24,  1, 64,   8x8 |2.00X, 1.98X, 1.93X, 1.91X, 1.91X
 32,   24x24,  3, 64,   5x5 |2.26X, 2.14X, 2.17X, 2.22X, 2.33X
128,   24x24,  3, 64,   3x3 |1.51X, 1.45X, 1.45X, 1.67X, 1.57X
 32,   14x14, 24, 64,   5x5 |1.21X, 1.19X, 1.16X, 1.70X, 1.17X
128, 128x128,  3, 96, 11x11 |2.17X, 2.18X, 2.19X, 2.20X, 2.18X

AVX2:

Parameters                  | Speedup (Num of threads: 1, 2, 4, 8, 16)
----------------------------|------------------------------------------
128,   24x24,  3, 64,   5x5 | 1.66X, 1.65X, 1.61X, 1.56X, 1.49X
 32,   24x24,  3, 64,   5x5 | 1.71X, 1.63X, 1.77X, 1.58X, 1.68X
128,   24x24,  1, 64,   5x5 | 1.44X, 1.40X, 1.38X, 1.37X, 1.33X
128,   24x24,  3, 64,   3x3 | 1.68X, 1.63X, 1.58X, 1.56X, 1.62X
128, 128x128,  3, 96, 11x11 | 1.36X, 1.36X, 1.37X, 1.37X, 1.37X

In the higher level benchmark cifar10, we observe a runtime improvement
of around 6% for AVX512 on Intel Skylake server (8 cores).

On lower level PackRhs micro-benchmarks specified in TensorFlow
tensorflow/core/kernels/eigen_spatial_convolutions_test.cc, we observe
the following runtime numbers:

AVX512:

Parameters                                                     | Runtime without patch (ns) | Runtime with patch (ns) | Speedup
---------------------------------------------------------------|----------------------------|-------------------------|---------
BM_RHS_NAME(PackRhs, 128, 24, 24, 3, 64, 5, 5, 1, 1, 256, 56)  |  41350                     | 15073                   | 2.74X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 1, 1, 256, 56)  |   7277                     |  7341                   | 0.99X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 2, 2, 256, 56)  |   8675                     |  8681                   | 1.00X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 1, 1, 256, 56)  |  24155                     | 16079                   | 1.50X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 2, 2, 256, 56)  |  25052                     | 17152                   | 1.46X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 1, 1, 256, 56) |  18269                     | 18345                   | 1.00X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 2, 4, 256, 56) |  19468                     | 19872                   | 0.98X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 1, 1, 36, 432)   | 156060                     | 42432                   | 3.68X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 2, 2, 36, 432)   | 132701                     | 36944                   | 3.59X

AVX2:

Parameters                                                     | Runtime without patch (ns) | Runtime with patch (ns) | Speedup
---------------------------------------------------------------|----------------------------|-------------------------|---------
BM_RHS_NAME(PackRhs, 128, 24, 24, 3, 64, 5, 5, 1, 1, 256, 56)  | 26233                      | 12393                   | 2.12X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 1, 1, 256, 56)  |  6091                      |  6062                   | 1.00X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 2, 2, 256, 56)  |  7427                      |  7408                   | 1.00X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 1, 1, 256, 56)  | 23453                      | 20826                   | 1.13X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 2, 2, 256, 56)  | 23167                      | 22091                   | 1.09X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 1, 1, 256, 56) | 23422                      | 23682                   | 0.99X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 2, 4, 256, 56) | 23165                      | 23663                   | 0.98X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 1, 1, 36, 432)   | 72689                      | 44969                   | 1.62X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 2, 2, 36, 432)   | 61732                      | 39779                   | 1.55X

All benchmarks on Intel Skylake server with 8 cores.
2019-04-20 06:46:43 +00:00
Gael Guennebaud
45e65fbb77 bug #1695: fix a numerical robustness issue. Computing the secular equation at the middle range without a shift might give a wrong sign. 2019-03-27 20:16:58 +01:00
William D. Irons
8de66719f9 Collapsed revision from PR-619
* Add support for pcmp_eq in AltiVec/Complex.h
* Fixed implementation of pcmp_eq for double

The new logic is based on the logic from NEON for double.
2019-03-26 18:14:49 +00:00
Gael Guennebaud
f11364290e ICC does not support -fno-unsafe-math-optimizations 2019-03-22 09:26:24 +01:00
David Tellenbach
3031d57200 PR 621: Fix documentation of EIGEN_COMP_EMSCRIPTEN 2019-03-21 02:21:04 +01:00
Deven Desai
51e399fc15 updates requested in the PR feedback. Also droping coded within #ifdef EIGEN_HAS_OLD_HIP_FP16 2019-03-19 21:45:25 +00:00
Deven Desai
2dbea5510f Merged eigen/eigen into default 2019-03-19 16:52:38 -04:00
Rasmus Larsen
5c93b38c5f Merged in rmlarsen/eigen (pull request PR-618)
Make clipping outside [-18:18] consistent for vectorized and non-vectorized paths of scalar_logistic_op<float>.

Approved-by: Gael Guennebaud <g.gael@free.fr>
2019-03-18 15:51:55 +00:00