Commit Graph

8425 Commits

Author SHA1 Message Date
Gael Guennebaud
62134082aa Update AutoDiffScalar wrt to scalar-multiple. 2016-06-14 15:06:35 +02:00
Gael Guennebaud
5d38203735 Update Tensor module to use bind1st_op and bind2nd_op 2016-06-14 15:06:03 +02:00
Gael Guennebaud
396d9cfb6e Generalize expr.pow(scalar), pow(expr,scalar) and pow(scalar,expr).
Internal: scalar_pow_op (unary) is removed, and scalar_binary_pow_op is renamed scalar_pow_op.
2016-06-14 14:10:07 +02:00
Gael Guennebaud
a9bb653a68 Update doc (scalar_add_op is now deprecated) 2016-06-14 12:07:00 +02:00
Gael Guennebaud
a8c08e8b8e Implement expr+scalar, scalar+expr, expr-scalar, and scalar-expr as binary expressions, and generalize supported scalar types.
The following functors are now deprecated: scalar_add_op, scalar_sub_op, and scalar_rsub_op.
2016-06-14 12:06:10 +02:00
Gael Guennebaud
756ac4a93d Fix doc. 2016-06-14 12:03:39 +02:00
Gael Guennebaud
f925dba3d9 Fix compilation of BVH example 2016-06-14 11:32:09 +02:00
Gael Guennebaud
12350d3ac7 Add unit test for AlignedBox::center 2016-06-14 11:31:52 +02:00
Gael Guennebaud
bcc0f38f98 Add unittesting plugins to scalar_product_op and scalar_quotient_op to help chaking that types are properly propagated. 2016-06-14 11:31:27 +02:00
Gael Guennebaud
f57fd78e30 Generalize coeff-wise sparse products to support different scalar types 2016-06-14 11:29:54 +02:00
Gael Guennebaud
f5b1c73945 Set cost of constant expression to 0 (the cost should be amortized through the expression) 2016-06-14 11:29:06 +02:00
Gael Guennebaud
deb8306e60 Move MatrixBase::operaotr*(UniformScaling) as a free function in Scaling.h, and fix return type. 2016-06-14 11:28:03 +02:00
Gael Guennebaud
64fcfd314f Implement scalar multiples and division by a scalar as a binary-expression with a constant expression.
This slightly complexifies the type of the expressions and implies that we now have to distinguish between scalar*expr and expr*scalar to catch scalar-multiple expression (e.g., see BlasUtil.h), but this brings several advantages:
- it makes it clear on each side the scalar is applied,
- it clearly reflects that we are dealing with a binary-expression,
- the complexity of the type is hidden through macros defined at the end of Macros.h,
- distinguishing between "scalar op expr" and "expr op scalar" is important to support non commutative fields (like quaternions)
- "scalar op expr" is now fully equivalent to "ConstantExpr(scalar) op expr"
- scalar_multiple_op, scalar_quotient1_op and scalar_quotient2_op are not used anymore in officially supported modules (still used in Tensor)
2016-06-14 11:26:57 +02:00
Gael Guennebaud
39781dc1e2 Fix compilation of evaluator unit test 2016-06-14 11:03:26 +02:00
Gael Guennebaud
3c12e24164 Add bind1st_op and bind2nd_op helpers to turn binary functors into unary ones, and implement scalar_multiple2 and scalar_quotient2 on top of them. 2016-06-13 16:18:59 +02:00
Gael Guennebaud
7a9ef7bbb4 Add default template parameters for the second scalar type of binary functors.
This enhences backward compatibility.
2016-06-13 16:17:23 +02:00
Gael Guennebaud
2ca2ffb65e check for mixing types in "array / scalar" expressions 2016-06-13 16:15:32 +02:00
Gael Guennebaud
4c61f00838 Add missing explicit scalar conversion 2016-06-12 22:42:13 +02:00
Gael Guennebaud
a3a4714aba Add debug output. 2016-06-11 14:41:53 +02:00
Gael Guennebaud
83904a21c1 Make sure T(i+1,i)==0 when diagonalizing T(i:i+1,i:i+1) 2016-06-11 14:41:36 +02:00
Benoit Steiner
65d33e5898 Merged in ibab/eigen (pull request PR-195)
Add small fixes to TensorScanOp
2016-06-10 19:31:17 -07:00
Benoit Steiner
a05607875a Don't refer to the half2 type unless it's been defined 2016-06-10 11:53:56 -07:00
Gael Guennebaud
fabae6c9a1 Cleanup 2016-06-10 15:58:33 +02:00
Gael Guennebaud
5de8d7036b Add real.pow(complex), complex.pow(real) unit tests. 2016-06-10 15:58:22 +02:00
Gael Guennebaud
5fdd703629 Enable mixing types in numext::pow 2016-06-10 15:58:04 +02:00
Gael Guennebaud
2e238bafb6 Big 279: enable mixing types for comparisons, min, and max. 2016-06-10 15:05:43 +02:00
Gael Guennebaud
0028049380 bug #1240: Remove any assumption on NEON vector types. 2016-06-09 23:08:11 +02:00
Igor Babuschkin
86aedc9282 Add small fixes to TensorScanOp 2016-06-07 20:06:38 +01:00
Christoph Hertzberg
db0118342c Fixed compilation of BVH_Example (required for make doc) 2016-06-07 19:17:18 +02:00
Benoit Steiner
84b2060a9e Fixed compilation error with gcc 4.4 2016-06-06 17:16:19 -07:00
Gael Guennebaud
2c462f4201 Clean handling for void type in EIGEN_CHECK_BINARY_COMPATIBILIY 2016-06-06 23:11:38 +02:00
Gael Guennebaud
3d71d3918e Disable shortcuts for res ?= prod when the scalar types do not match exactly. 2016-06-06 23:10:55 +02:00
Benoit Steiner
7ef9f47b58 Misc small improvements to the reduction code. 2016-06-06 14:09:46 -07:00
Benoit Steiner
ea75dba201 Added missing EIGEN_DEVICE_FUNC qualifiers to the unary array ops 2016-06-06 13:32:28 -07:00
Benoit Steiner
33f0340188 Implement result_of for the new ternary functors 2016-06-06 12:06:42 -07:00
Gael Guennebaud
df24f4a01d bug #1201: improve code generation of affine*vec with MSVC 2016-06-06 16:46:46 +02:00
Benoit Steiner
9137f560f0 Moved assertions to the constructor to make the code more portable 2016-06-06 07:26:48 -07:00
Gael Guennebaud
66e99ab6a1 Relax mixing-type constraints for binary coefficient-wise operators:
- Replace internal::scalar_product_traits<A,B> by Eigen::ScalarBinaryOpTraits<A,B,OP>
- Remove the "functor_is_product_like" helper (was pretty ugly)
- Currently, OP is not used, but it is available to the user for fine grained tuning
- Currently, only the following operators have been generalized: *,/,+,-,=,*=,/=,+=,-=
- TODO: generalize all other binray operators (comparisons,pow,etc.)
- TODO: handle "scalar op array" operators (currently only * is handled)
- TODO: move the handling of the "void" scalar type to ScalarBinaryOpTraits
2016-06-06 15:11:41 +02:00
Benoit Steiner
1f1e0b9e30 Silenced compilation warning 2016-06-05 12:59:11 -07:00
Benoit Steiner
5b95b4daf9 Moved static assertions into the class constructor to make the code more portable 2016-06-05 12:57:48 -07:00
Christoph Hertzberg
d7e3e4bb04 Removed executable bits from header files. 2016-06-05 10:15:41 +02:00
Eugene Brevdo
c53687dd14 Add randomized properties tests for betainc special function. 2016-06-05 11:10:30 -07:00
Rasmus Munk Larsen
f1f2ff8208 size_t -> int 2016-06-03 18:06:37 -07:00
Rasmus Munk Larsen
76308e7fd2 Add CurrentThreadId and NumThreads methods to Eigen threadpools and TensorDeviceThreadPool. 2016-06-03 16:28:58 -07:00
Sean Templeton
bd21243821 Fix compile errors initializing packets on ARM DS-5 5.20
The ARM DS-5 5.20 compiler fails compiling with the following errors:

"src/Core/arch/NEON/PacketMath.h", line 113: Error:  #146: too many initializer values
    Packet4f countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
                         ^
"src/Core/arch/NEON/PacketMath.h", line 118: Error:  #146: too many initializer values
    Packet4i countdown = EIGEN_INIT_NEON_PACKET4(0, 1, 2, 3);
                         ^
"src/Core/arch/NEON/Complex.h", line 30: Error:  #146: too many initializer values
  static uint32x4_t p4ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET4(0x00000000, 0x80000000, 0x00000000, 0x80000000);
                                    ^
"src/Core/arch/NEON/Complex.h", line 31: Error:  #146: too many initializer values
  static uint32x2_t p2ui_CONJ_XOR = EIGEN_INIT_NEON_PACKET2(0x00000000, 0x80000000);
                                    ^

The vectors are implemented as two doubles, hence the too many initializer values error.
Changed the code to use intrinsic load functions which all compilers
implementing NEON should have.
2016-06-03 10:51:35 -05:00
Gael Guennebaud
1fc2746417 Make Arrays's ctor/assignment noexcept 2016-06-09 22:52:37 +02:00
Benoit Steiner
37638dafd7 Simplified the code that dispatches vectorized reductions on GPU 2016-06-09 10:29:52 -07:00
Benoit Steiner
66796e843d Fixed definition of some of the reducer_traits 2016-06-09 08:50:01 -07:00
Benoit Steiner
4434b16694 Pulled latest updates from trunk 2016-06-09 08:25:47 -07:00
Benoit Steiner
14a112ee15 Use signed integers more consistently to encode the number of threads to use to evaluate a tensor expression. 2016-06-09 08:25:22 -07:00