Commit Graph

10801 Commits

Author SHA1 Message Date
Gael Guennebaud
e23bf40dc2 Add unit test for LinSpaced and complex numbers. 2019-02-18 22:03:47 +01:00
Gael Guennebaud
796db94e6e bug #1194: implement slightly faster and SIMD friendly 4x4 determinant. 2019-02-18 16:21:27 +01:00
Gael Guennebaud
31b6e080a9 Fix regression: .conjugate() was popped out but not re-introduced. 2019-02-18 14:45:55 +01:00
Gael Guennebaud
c69d0d08d0 Set cost of conjugate to 0 (in practice it boils down to a no-op).
This is also important to make sure that A.conjugate() * B.conjugate() does not evaluate
its arguments into temporaries (e.g., if A and B are fixed and small, or * fall back to lazyProduct)
2019-02-18 14:43:07 +01:00
Gael Guennebaud
512b74aaa1 GEMM: catch all scalar-multiple variants when falling-back to a coeff-based product.
Before only s*A*B was caught which was both inconsistent with GEMM, sub-optimal,
and could even lead to compilation-errors (https://stackoverflow.com/questions/54738495).
2019-02-18 11:47:54 +01:00
Christoph Hertzberg
ec032ac03b Guard C++11-style default constructor. Also, this is only needed for MSVC 2019-02-16 09:44:05 +01:00
Gael Guennebaud
902a7793f7 Add possibility to bench row-major lhs and rhs 2019-02-15 16:52:34 +01:00
Gael Guennebaud
83309068b4 bug #1680: improve MSVC inlining by declaring many triavial constructors and accessors as STRONG_INLINE. 2019-02-15 16:35:35 +01:00
Gael Guennebaud
0505248f25 bug #1680: make all "block" methods strong-inline and device-functions (some were missing EIGEN_DEVICE_FUNC) 2019-02-15 16:33:56 +01:00
Gael Guennebaud
559320745e bug #1678: Fix lack of __FMA__ macro on MSVC with AVX512 2019-02-15 10:30:28 +01:00
Gael Guennebaud
d85ae650bf bug #1678: workaround MSVC compilation issues with AVX512 2019-02-15 10:24:17 +01:00
Gael Guennebaud
f2970819a2 bug #1679: avoid possible division by 0 in complex-schur 2019-02-15 09:39:25 +01:00
Rasmus Munk Larsen
65e23ca7e9 Revert b55b5c7280
.
2019-02-14 13:46:13 -08:00
Rasmus Larsen
efeabee445 Merged in ezhulenev/eigen-01 (pull request PR-590)
Do not generate no-op cast() and conjugate() expressions
2019-02-14 21:16:12 +00:00
Eugene Zhulenev
7b837559a7 Fix signed-unsigned return in RuqQueue 2019-02-14 10:40:21 -08:00
Eugene Zhulenev
f0d42d2265 Fix signed-unsigned comparison warning in RunQueue 2019-02-14 10:27:28 -08:00
Eugene Zhulenev
106ba7bb1a Do not generate no-op cast() and conjugate() expressions 2019-02-14 09:51:51 -08:00
Eugene Zhulenev
8c2f30c790 Speedup Tensor ThreadPool RunQueu::Empty() 2019-02-13 10:20:53 -08:00
Gael Guennebaud
bdcb5f3304 Let's properly use Score instead of std::abs, and remove deprecated FIXME ( a /= b does a/b and not a * (1/b) as it was a long time ago...) 2019-02-11 22:56:19 +01:00
Gael Guennebaud
2edfc6807d Fix compilation of empty products of the form: Mx0 * 0xN 2019-02-11 18:24:07 +01:00
Gael Guennebaud
eb46f34a8c Speed up 2x2 LU by a factor 2, and other small fixed sizes by about 10%.
Not sure that's so critical, but this does not complexify the code base much.
2019-02-11 17:59:35 +01:00
Gael Guennebaud
dada863d23 Enable unit tests of PartialPivLU on fixed size matrices, and increase tested matrix size (blocking was not tested!) 2019-02-11 17:56:20 +01:00
Gael Guennebaud
ab6e6edc32 Speedup PartialPivLU for small matrices by passing compile-time sizes when available.
This change set also makes a better use of Map<>+OuterStride and Ref<> yielding surprising speed up for small dynamic sizes as well.
The table below reports times in micro seconds for 10 random matrices:
           | ------ float --------- | ------- double ------- |
     size  | before   after  ratio  |  before   after  ratio |
fixed	  1	 | 0.34     0.11   2.93   |  0.35     0.11   3.06  |
fixed	  2	 | 0.81     0.24   3.38   |  0.91     0.25   3.60  |
fixed	  3	 | 1.49     0.49   3.04   |  1.68     0.55   3.01  |
fixed	  4	 | 2.31     0.70   3.28   |  2.45     1.08   2.27  |
fixed	  5	 | 3.49     1.11   3.13   |  3.84     2.24   1.71  |
fixed	  6	 | 4.76     1.64   2.88   |  4.87     2.84   1.71  |
dyn     1	 | 0.50     0.40   1.23   |  0.51     0.40   1.26  |
dyn     2	 | 1.08     0.85   1.27   |  1.04     0.69   1.49  |
dyn     3	 | 1.76     1.26   1.40   |  1.84     1.14   1.60  |
dyn     4	 | 2.57     1.75   1.46   |  2.67     1.66   1.60  |
dyn     5	 | 3.80     2.64   1.43   |  4.00     2.48   1.61  |
dyn     6	 | 5.06     3.43   1.47   |  5.15     3.21   1.60  |
2019-02-11 13:58:24 +01:00
Eugene Zhulenev
21eb97d3e0 Add PacketConv implementation for non-vectorizable src expressions 2019-02-08 15:47:25 -08:00
Eugene Zhulenev
1e36166ed1 Optimize TensorConversion evaluator: do not convert same type 2019-02-08 15:13:24 -08:00
Steven Peters
953ca5ba2f Spline.h: fix spelling "spang" -> "span" 2019-02-08 06:23:24 +00:00
Eugene Zhulenev
59998117bb Don't do parallel_pack if we can use thread_local memory in tensor contractions 2019-02-07 09:21:25 -08:00
Gael Guennebaud
013cc3a6b3 Make GEMM fallback to GEMV for runtime vectors.
This is a more general and simpler version of changeset 4c0fa6ce0f
2019-02-07 16:24:09 +01:00
Gael Guennebaud
fa2fcb4895 Backed out changeset 4c0fa6ce0f 2019-02-07 16:07:08 +01:00
Gael Guennebaud
b3c4344a68 bug #1676: workaround GCC's bug in c++17 mode. 2019-02-07 15:21:35 +01:00
Rasmus Larsen
3091c03898 Merged in ezhulenev/eigen-01 (pull request PR-581)
Parallelize tensor contraction only by sharding dimension and use 'thread-local' memory for packing

Approved-by: Rasmus Larsen <rmlarsen@google.com>
Approved-by: Gael Guennebaud <g.gael@free.fr>
2019-02-05 22:45:20 +00:00
Eugene Zhulenev
8491127082 Do not reduce parallelism too much in contractions with small number of threads 2019-02-04 12:59:33 -08:00
Eugene Zhulenev
eb21bab769 Parallelize tensor contraction only by sharding dimension and use 'thread-local' memory for packing 2019-02-04 10:43:16 -08:00
Eugene Zhulenev
6d0f6265a9 Remove duplicated comment line 2019-02-04 10:30:25 -08:00
Eugene Zhulenev
690b2c45b1 Fix GeneralBlockPanelKernel Android compilation 2019-02-04 10:29:15 -08:00
Gael Guennebaud
871e2e5339 bug #1674: disable GCC's unsafe-math-optimizations in sin/cos vectorization (results are completely wrong otherwise) 2019-02-03 08:54:47 +01:00
Rasmus Larsen
e7b481ea74 Merged in rmlarsen/eigen (pull request PR-578)
Speed up Eigen matrix*vector and vector*matrix multiplication.

Approved-by: Eugene Zhulenev <ezhulenev@google.com>
2019-02-02 01:53:44 +00:00
Sameer Agarwal
b55b5c7280 Speed up row-major matrix-vector product on ARM
The row-major matrix-vector multiplication code uses a threshold to
check if processing 8 rows at a time would thrash the cache.

This change introduces two modifications to this logic.

1. A smaller threshold for ARM and ARM64 devices.

The value of this threshold was determined empirically using a Pixel2
phone, by benchmarking a large number of matrix-vector products in the
range [1..4096]x[1..4096] and measuring performance separately on
small and little cores with frequency pinning.

On big (out-of-order) cores, this change has little to no impact. But
on the small (in-order) cores, the matrix-vector products are up to
700% faster. Especially on large matrices.

The motivation for this change was some internal code at Google which
was using hand-written NEON for implementing similar functionality,
processing the matrix one row at a time, which exhibited substantially
better performance than Eigen.

With the current change, Eigen handily beats that code.

2. Make the logic for choosing number of simultaneous rows apply
unifiormly to 8, 4 and 2 rows instead of just 8 rows.

Since the default threshold for non-ARM devices is essentially
unchanged (32000 -> 32 * 1024), this change has no impact on non-ARM
performance. This was verified by running the same set of benchmarks
on a Xeon desktop.
2019-02-01 15:23:53 -08:00
Rasmus Munk Larsen
4c0fa6ce0f Speed up Eigen matrix*vector and vector*matrix multiplication.
This change speeds up Eigen matrix * vector and vector * matrix multiplication for dynamic matrices when it is known at runtime that one of the factors is a vector.

The benchmarks below test

c.noalias()= n_by_n_matrix * n_by_1_matrix;
c.noalias()= 1_by_n_matrix * n_by_n_matrix;
respectively.

Benchmark measurements:

SSE:
Run on *** (72 X 2992 MHz CPUs); 2019-01-28T17:51:44.452697457-08:00
CPU: Intel Skylake Xeon with HyperThreading (36 cores) dL1:32KB dL2:1024KB dL3:24MB
Benchmark                          Base (ns)  New (ns) Improvement
------------------------------------------------------------------
BM_MatVec/64                            1096       312    +71.5%
BM_MatVec/128                           4581      1464    +68.0%
BM_MatVec/256                          18534      5710    +69.2%
BM_MatVec/512                         118083     24162    +79.5%
BM_MatVec/1k                          704106    173346    +75.4%
BM_MatVec/2k                         3080828    742728    +75.9%
BM_MatVec/4k                        25421512   4530117    +82.2%
BM_VecMat/32                             352       130    +63.1%
BM_VecMat/64                            1213       425    +65.0%
BM_VecMat/128                           4640      1564    +66.3%
BM_VecMat/256                          17902      5884    +67.1%
BM_VecMat/512                          70466     24000    +65.9%
BM_VecMat/1k                          340150    161263    +52.6%
BM_VecMat/2k                         1420590    645576    +54.6%
BM_VecMat/4k                         8083859   4364327    +46.0%

AVX2:
Run on *** (72 X 2993 MHz CPUs); 2019-01-28T17:45:11.508545307-08:00
CPU: Intel Skylake Xeon with HyperThreading (36 cores) dL1:32KB dL2:1024KB dL3:24MB
Benchmark                          Base (ns)  New (ns) Improvement
------------------------------------------------------------------
BM_MatVec/64                             619       120    +80.6%
BM_MatVec/128                           9693       752    +92.2%
BM_MatVec/256                          38356      2773    +92.8%
BM_MatVec/512                          69006     12803    +81.4%
BM_MatVec/1k                          443810    160378    +63.9%
BM_MatVec/2k                         2633553    646594    +75.4%
BM_MatVec/4k                        16211095   4327148    +73.3%
BM_VecMat/64                             925       227    +75.5%
BM_VecMat/128                           3438       830    +75.9%
BM_VecMat/256                          13427      2936    +78.1%
BM_VecMat/512                          53944     12473    +76.9%
BM_VecMat/1k                          302264    157076    +48.0%
BM_VecMat/2k                         1396811    675778    +51.6%
BM_VecMat/4k                         8962246   4459010    +50.2%

AVX512:
Run on *** (72 X 2993 MHz CPUs); 2019-01-28T17:35:17.239329863-08:00
CPU: Intel Skylake Xeon with HyperThreading (36 cores) dL1:32KB dL2:1024KB dL3:24MB
Benchmark                          Base (ns)  New (ns) Improvement
------------------------------------------------------------------
BM_MatVec/64                             401       111    +72.3%
BM_MatVec/128                           1846       513    +72.2%
BM_MatVec/256                          36739      1927    +94.8%
BM_MatVec/512                          54490      9227    +83.1%
BM_MatVec/1k                          487374    161457    +66.9%
BM_MatVec/2k                         2016270    643824    +68.1%
BM_MatVec/4k                        13204300   4077412    +69.1%
BM_VecMat/32                             324       106    +67.3%
BM_VecMat/64                            1034       246    +76.2%
BM_VecMat/128                           3576       802    +77.6%
BM_VecMat/256                          13411      2561    +80.9%
BM_VecMat/512                          58686     10037    +82.9%
BM_VecMat/1k                          320862    163750    +49.0%
BM_VecMat/2k                         1406719    651397    +53.7%
BM_VecMat/4k                         7785179   4124677    +47.0%
Currently watchingStop watching
2019-01-31 14:24:08 -08:00
Gael Guennebaud
7ef879f6bf GEBP: improves pipelining in the 1pX4 path with FMA.
Prior to this change, a product with a LHS having 8 rows was faster with AVX-only than with AVX+FMA.
With AVX+FMA I measured a speed up of about x1.25 in such cases.
2019-01-30 23:45:12 +01:00
Gael Guennebaud
de77bf5d6c Fix compilation with ARM64. 2019-01-30 16:48:20 +01:00
Gael Guennebaud
d586686924 Workaround lack of support for arbitrary packet-type in Tensor by manually loading half/quarter packets in tensor contraction mapper. 2019-01-30 16:48:01 +01:00
Gael Guennebaud
eb4c6bb22d Fix conflicts and merge 2019-01-30 15:57:08 +01:00
Gael Guennebaud
e3622a0396 Slightly extend discussions on auto and move the content of the Pit falls wiki page here.
http://eigen.tuxfamily.org/index.php?title=Pit_Falls
2019-01-30 13:09:21 +01:00
Gael Guennebaud
df12fae8b8 According to https://gcc.gnu.org/bugzilla/show_bug.cgi?id=89101, the previous GCC issue is fixed in GCC trunk (will be gcc 9). 2019-01-30 11:52:28 +01:00
Gael Guennebaud
3775926bba ARM64 & GEBP: add specialization for double +30% speed up 2019-01-30 11:49:06 +01:00
Gael Guennebaud
be5b0f664a ARM64 & GEBP: Make use of vfmaq_laneq_f32 and workaround GCC's issue in generating good ASM 2019-01-30 11:48:25 +01:00
Christoph Hertzberg
a7779a9b42 Hide some annoying unused variable warnings in g++8.1 2019-01-29 16:48:21 +01:00
Gael Guennebaud
efe02292a6 Add recent gemm related changesets and various cleanups in perf-monitoring 2019-01-29 11:53:47 +01:00
Gael Guennebaud
8a06c699d0 bug #1669: fix PartialPivLU/inverse with zero-sized matrices. 2019-01-29 10:27:13 +01:00