Implement vectorized versions of log1p and expm1 in Eigen using Kahan's formulas, and change the scalar implementations to properly handle infinite arguments.
This actually fixes an issue in unit-test packetmath_2 with pcmp_eq when it is compiled with clang. When pcmp_eq(Packet4f,Packet4f) is used instead of pcmp_eq(Packet2d,Packet2d), the unit-test does not pass due to NaN on ref vector.
Depending on instruction set, significant speedups are observed for the vectorized path:
log1p wall time is reduced 60-93% (2.5x - 15x speedup)
expm1 wall time is reduced 0-85% (1x - 7x speedup)
The scalar path is slower by 20-30% due to the extra branch needed to handle +infinity correctly.
Full benchmarks measured on Intel(R) Xeon(R) Gold 6154 here: https://bitbucket.org/snippets/rmlarsen/MXBkpM
The vec_vsx_ld/vec_vsx_st builtins were wrongly used for aligned load/store. In fact, they perform unaligned memory access and, even when the address is 16-byte aligned, they are much slower (at least 2x) than their aligned counterparts.
For double/Packet2d vec_xl/vec_xst should be prefered over vec_ld/vec_st, although the latter works when casted to float/Packet4f.
Silencing some weird warning with throw but some GCC versions. Such warning are not thrown by Clang.
If no offset is given, them it should be zero.
Also passes full address to vec_vsx_ld/st builtins.
Removes userless _EIGEN_ALIGNED_PTR & _EIGEN_MASK_ALIGNMENT.
Removes unnecessary casts.
* an interface for SYCL buffers to behave as a non-dereferenceable pointer
* an interface for placeholder accessor to behave like a pointer on both host and device
* Allow specifying multiple GPU architectures. E.g.:
cmake -DEIGEN_CUDA_COMPUTE_ARCH="60;70"
* Pass CUDA SDK path to clang. Without it it will default to /usr/local/cuda
which may not be the right location, if cmake was invoked with
-DCUDA_TOOLKIT_ROOT_DIR=/some/other/CUDA/path
That was hurting users with compilers that would object to proceed with
that:
"""
./Eigen/src/Core/products/GeneralMatrixVector.h:356:10: error: declaration shadows a static data member of 'general_matrix_vector_product<type-parameter-0-0, type-parameter-0-1, type-parameter-0-2, 1, ConjugateLhs, type-parameter-0-4, type-parameter-0-5, ConjugateRhs, Version>' [-Werror,-Wshadow]
LhsPacketSize = Traits::LhsPacketSize,
^
./Eigen/src/Core/products/GeneralMatrixVector.h:307:22: note: previous declaration is here
static const Index LhsPacketSize = Traits::LhsPacketSize;
"""
This fixes compilation issues with RealScalar types that are not implicitly castable from Index (e.g. ceres Jet types).
Reported by Peter Anderson-Sprecher via eMail
This fixed 2 deadlocks caused by sloppiness in the EventCount logic.
Both most likely were introduced by cl/236729920 which includes the new EventCount algorithm:
01da8caf00
bug #1 (Prewait):
Prewait must not consume existing signals.
Consider the following scenario.
There are 2 thread pool threads (1 and 2) and 1 external thread (3). RunQueue is empty.
Thread 1 checks the queue, calls Prewait, checks RunQueue again and now is going to call CommitWait.
Thread 2 checks the queue and now is going to call Prewait.
Thread 3 submits 2 tasks, EventCount signals is set to 1 because only 1 waiter is registered the second signal is discarded).
Now thread 2 resumes and calls Prewait and takes away the signal.
Thread 1 resumes and calls CommitWait, there are no pending signals anymore, so it blocks.
As the result we have 2 tasks, but only 1 thread is running.
bug #2 (CancelWait):
CancelWait must not take away a signal if it's not sure that the signal was meant for this thread.
When one thread blocks and another submits a new task concurrently, the EventCount protocol guarantees only the following properties (similar to the Dekker's algorithm):
(a) the registered waiter notices presence of the new task and does not block
(b) the signaler notices presence of the waiters and wakes it
(c) both the waiter notices presence of the new task and signaler notices presence of the waiter
[it's only that both of them do not notice each other must not be possible, because it would lead to a deadlock]
CancelWait is called for cases (a) and (c). For case (c) it is OK to take the notification signal away, but it's not OK for (a) because nobody queued a signals for us and we take away a signal meant for somebody else.
Consider:
Thread 1 calls Prewait, checks RunQueue, it's empty, now it's going to call CommitWait.
Thread 3 submits 2 tasks, EventCount signals is set to 1 because only 1 waiter is registered the second signal is discarded).
Thread 2 calls Prewait, checks RunQueue, discovers the tasks, calls CancelWait and consumes the pending signal (meant for thread 1).
Now Thread 1 resumes and calls CommitWait, since there are no signals it blocks.
As the result we have 2 tasks, but only 1 thread is running.
Both deadlocks are only a problem if the tasks require parallelism. Most computational tasks do not require parallelism, i.e. a single thread will run task 1, finish it and then dequeue and run task 2.
This fix undoes some of the sloppiness in the EventCount that was meant to reduce CPU consumption by idle threads, because we now have more threads running in these corner cases. But we still don't have pthread_yield's and maybe the strictness introduced by this change will actually help to reduce tail latency because we will have threads running when we actually need them running.
B) fix deadlock in thread pool caused by RunQueue
This fixed a deadlock caused by sloppiness in the RunQueue logic.
Most likely this was introduced with the non-blocking thread pool.
The deadlock only affects workloads that require parallelism.
Most computational tasks don't require parallelism.
PopBack must not fail spuriously. If it does, it can effectively lead to single thread consuming several wake up signals.
Consider 2 worker threads are blocked.
External thread submits a task. One of the threads is woken.
It tries to steal the task, but fails due to a spurious failure in PopBack (external thread submits another task and holds the lock).
The thread executes blocking protocol again (it won't block because NonEmptyQueueIndex is precise and the thread will discover pending work, but it has called PrepareWait).
Now external thread submits another task and signals EventCount again.
The signal is consumed by the first thread again. But now we have 2 tasks pending but only 1 worker thread running.
It may be possible to fix this in a different way: make EventCount::CancelWait forward wakeup signal to a blocked thread rather then consuming it. But this looks more complex and I am not 100% that it will fix the bug.
It's also possible to have 2 versions of PopBack: one will do try_to_lock and another won't. Then worker threads could first opportunistically check all queues with try_to_lock, and only use the blocking version before blocking. But let's first fix the bug with the simpler change.