Commit Graph

8017 Commits

Author SHA1 Message Date
Gael Guennebaud
c3410804cd Make EIGEN_HAS_VARIADIC_TEMPLATES user configurable 2016-05-20 15:05:38 +02:00
Gael Guennebaud
abd1c1af7a Make EIGEN_HAS_STD_RESULT_OF user configurable 2016-05-20 15:01:27 +02:00
Gael Guennebaud
1395056fc0 Make EIGEN_HAS_C99_MATH user configurable 2016-05-20 14:58:19 +02:00
Gael Guennebaud
48bf5ec216 Make EIGEN_HAS_RVALUE_REFERENCES user configurable 2016-05-20 14:54:20 +02:00
Gael Guennebaud
f43ae88892 Rename EIGEN_HAVE_RVALUE_REFERENCES to EIGEN_HAS_RVALUE_REFERENCES 2016-05-20 14:48:51 +02:00
Gael Guennebaud
8d6bd5691b polygamma is C99/C++11 only 2016-05-20 14:45:33 +02:00
Gael Guennebaud
998f2efc58 Add a EIGEN_MAX_CPP_VER option to limit the C++ version to be used. 2016-05-20 14:44:28 +02:00
Gael Guennebaud
c028d96089 Improve doc of special math functions 2016-05-20 14:18:48 +02:00
Gael Guennebaud
0ba32f99bd Rename UniformRandom to UnitRandom. 2016-05-20 13:21:34 +02:00
Gael Guennebaud
7a9d9cde94 Fix coding practice in Quaternion::UniformRandom 2016-05-20 13:19:52 +02:00
Joseph Mirabel
eb0cc2573a bug #823: add static method to Quaternion for uniform random rotations. 2016-05-20 13:15:40 +02:00
Gael Guennebaud
2f656ce447 Remove std:: to enable custom scalar types. 2016-05-19 23:13:47 +02:00
David Dement
ccc7563ac5 made a fix to the GMRES solver so that it now correctly reports the error achieved in the solution process 2016-05-16 14:26:41 -04:00
Gael Guennebaud
575bc44c3f Fix unit test. 2016-05-19 22:48:16 +02:00
Gael Guennebaud
ccb408ee6a Improve unit tests of zeta, polygamma, and digamma 2016-05-19 18:34:41 +02:00
Gael Guennebaud
6761c64d60 zeta and polygamma are not unary functions, but binary ones. 2016-05-19 18:34:16 +02:00
Gael Guennebaud
7a54032408 zeta and digamma do not require C++11/C99 2016-05-19 17:36:47 +02:00
Gael Guennebaud
ce12562710 Add some c++11 flags in documentation 2016-05-19 17:35:30 +02:00
Gael Guennebaud
b6ed8244b4 bug #1201: optimize affine*vector products 2016-05-19 16:09:15 +02:00
Gael Guennebaud
73693b5de6 bug #1221: disable gcc 6 warning: ignoring attributes on template argument 2016-05-19 15:21:53 +02:00
Gael Guennebaud
df9a5e13c6 Fix SelfAdjointEigenSolver for some input expression types, and add new regression unit tests for sparse and selfadjointview inputs. 2016-05-19 13:07:33 +02:00
Gael Guennebaud
6a2916df80 DiagonalWrapper is a vector, so it must expose the LinearAccessBit flag. 2016-05-19 13:06:21 +02:00
Gael Guennebaud
a226f6af6b Add support for SelfAdjointView::diagonal() 2016-05-19 13:05:33 +02:00
Gael Guennebaud
ee7da3c7c5 Fix SelfAdjointView::triangularView for complexes. 2016-05-19 13:01:51 +02:00
Gael Guennebaud
b6b8578a67 bug #1230: add support for SelfadjointView::triangularView. 2016-05-19 11:36:38 +02:00
Benoit Steiner
bb3ff8e9d9 Advertize the packet api of the tensor reducers iff the corresponding packet primitives are available. 2016-05-18 14:52:49 -07:00
Gael Guennebaud
84df9142e7 bug #1231: fix compilation regression regarding complex_array/=real_array and add respective unit tests 2016-05-18 23:00:13 +02:00
Gael Guennebaud
21d692d054 Use coeff(i,j) instead of operator(). 2016-05-18 17:09:20 +02:00
Gael Guennebaud
8456bbbadb bug #1224: fix regression in (dense*dense).sparseView() by specializing evaluator<SparseView<Product>> for sparse products only. 2016-05-18 16:53:28 +02:00
Gael Guennebaud
b507b82326 Use default sorting strategy for square products. 2016-05-18 16:51:54 +02:00
Gael Guennebaud
1fa15ceee6 Extend sparse*sparse product unit test to check that the expected implementation is used (conservative vs auto pruning). 2016-05-18 16:50:54 +02:00
Gael Guennebaud
548a487800 bug #1229: bypass usage of Derived::Options which is available for plain matrix types only. Better use column-major storage anyway. 2016-05-18 16:44:05 +02:00
Gael Guennebaud
43790e009b Pass argument by const ref instead of by value in pow(AutoDiffScalar...) 2016-05-18 16:28:02 +02:00
Gael Guennebaud
1fbfab27a9 bug #1223: fix compilation of AutoDiffScalar's min/max operators, and add regression unit test. 2016-05-18 16:26:26 +02:00
Gael Guennebaud
448d9d943c bug #1222: fix compilation in AutoDiffScalar and add respective unit test 2016-05-18 16:00:11 +02:00
Gael Guennebaud
5a71eb5985 Big 1213: add regression unit test. 2016-05-18 14:03:03 +02:00
Gael Guennebaud
747e3290c0 bug #1213: rename some enums type for consistency. 2016-05-18 13:26:56 +02:00
Benoit Steiner
86ae94462e #if defined(EIGEN_USE_NONBLOCKING_THREAD_POOL) is now #if !defined(EIGEN_USE_SIMPLE_THREAD_POOL): the non blocking thread pool is the default since it's more scalable, and one needs to request the old thread pool explicitly. 2016-05-17 14:06:15 -07:00
Benoit Steiner
997c335970 Fixed compilation error 2016-05-17 12:54:18 -07:00
Benoit Steiner
ebf6ada5ee Fixed compilation error in the tensor thread pool 2016-05-17 12:33:46 -07:00
Rasmus Munk Larsen
0bb61b04ca Merge upstream. 2016-05-17 10:26:10 -07:00
Rasmus Munk Larsen
0dbd68145f Roll back changes to core. Move include of TensorFunctors.h up to satisfy dependence in TensorCostModel.h. 2016-05-17 10:25:19 -07:00
Rasmus Larsen
00228f2506 Merged eigen/eigen into default 2016-05-17 09:49:31 -07:00
Benoit Steiner
e7e64c3277 Enable the use of the packet api to evaluate tensor broadcasts. This speed things up quite a bit:
Before"
M_broadcasting/10        500000       3690    27.10 MFlops/s
BM_broadcasting/80        500000       4014  1594.24 MFlops/s
BM_broadcasting/640       100000      14770 27731.35 MFlops/s
BM_broadcasting/4K          5000     632711 39512.48 MFlops/s
After:
BM_broadcasting/10        500000       4287    23.33 MFlops/s
BM_broadcasting/80        500000       4455  1436.41 MFlops/s
BM_broadcasting/640       200000      10195 40173.01 MFlops/s
BM_broadcasting/4K          5000     423746 58997.57 MFlops/s
2016-05-17 09:24:35 -07:00
Benoit Steiner
5fa27574dd Allow vectorized padding on GPU. This helps speed things up a little
Before:
BM_padding/10            5000000        460   217.03 MFlops/s
BM_padding/80            5000000        460 13899.40 MFlops/s
BM_padding/640           5000000        461 888421.17 MFlops/s
BM_padding/4K            5000000        460 54316322.55 MFlops/s
After:
BM_padding/10            5000000        454   220.20 MFlops/s
BM_padding/80            5000000        455 14039.86 MFlops/s
BM_padding/640           5000000        452 904968.83 MFlops/s
BM_padding/4K            5000000        411 60750049.21 MFlops/s
2016-05-17 09:17:26 -07:00
Benoit Steiner
86da77cb9b Pulled latest updates from trunk. 2016-05-17 07:21:48 -07:00
Benoit Steiner
92fc6add43 Don't rely on c++11 extension when we don't have to. 2016-05-17 07:21:22 -07:00
Benoit Steiner
2d74ef9682 Avoid float to double conversion 2016-05-17 07:20:11 -07:00
Benoit Steiner
a80d875916 Added missing costPerCoeff method 2016-05-16 09:31:10 -07:00
Benoit Steiner
83ef39e055 Turn on the cost model by default. This results in some significant speedups for smaller tensors. For example, below are the results for the various tensor reductions.
Before:
BM_colReduction_12T/10       1000000       1949    51.29 MFlops/s
BM_colReduction_12T/80        100000      15636   409.29 MFlops/s
BM_colReduction_12T/640        20000      95100  4307.01 MFlops/s
BM_colReduction_12T/4K           500    4573423  5466.36 MFlops/s
BM_colReduction_4T/10        1000000       1867    53.56 MFlops/s
BM_colReduction_4T/80         500000       5288  1210.11 MFlops/s
BM_colReduction_4T/640         10000     106924  3830.75 MFlops/s
BM_colReduction_4T/4K            500    9946374  2513.48 MFlops/s
BM_colReduction_8T/10        1000000       1912    52.30 MFlops/s
BM_colReduction_8T/80         200000       8354   766.09 MFlops/s
BM_colReduction_8T/640         20000      85063  4815.22 MFlops/s
BM_colReduction_8T/4K            500    5445216  4591.19 MFlops/s
BM_rowReduction_12T/10       1000000       2041    48.99 MFlops/s
BM_rowReduction_12T/80        100000      15426   414.87 MFlops/s
BM_rowReduction_12T/640        50000      39117 10470.98 MFlops/s
BM_rowReduction_12T/4K           500    3034298  8239.14 MFlops/s
BM_rowReduction_4T/10        1000000       1834    54.51 MFlops/s
BM_rowReduction_4T/80         500000       5406  1183.81 MFlops/s
BM_rowReduction_4T/640         50000      35017 11697.16 MFlops/s
BM_rowReduction_4T/4K            500    3428527  7291.76 MFlops/s
BM_rowReduction_8T/10        1000000       1925    51.95 MFlops/s
BM_rowReduction_8T/80         200000       8519   751.23 MFlops/s
BM_rowReduction_8T/640         50000      33441 12248.42 MFlops/s
BM_rowReduction_8T/4K           1000    2852841  8763.19 MFlops/s


After:
BM_colReduction_12T/10      50000000         59  1678.30 MFlops/s
BM_colReduction_12T/80       5000000        725  8822.71 MFlops/s
BM_colReduction_12T/640        20000      90882  4506.93 MFlops/s
BM_colReduction_12T/4K           500    4668855  5354.63 MFlops/s
BM_colReduction_4T/10       50000000         59  1687.37 MFlops/s
BM_colReduction_4T/80        5000000        737  8681.24 MFlops/s
BM_colReduction_4T/640         50000     108637  3770.34 MFlops/s
BM_colReduction_4T/4K            500    7912954  3159.38 MFlops/s
BM_colReduction_8T/10       50000000         60  1657.21 MFlops/s
BM_colReduction_8T/80        5000000        726  8812.48 MFlops/s
BM_colReduction_8T/640         20000      91451  4478.90 MFlops/s
BM_colReduction_8T/4K            500    5441692  4594.16 MFlops/s
BM_rowReduction_12T/10      20000000         93  1065.28 MFlops/s
BM_rowReduction_12T/80       2000000        950  6730.96 MFlops/s
BM_rowReduction_12T/640        50000      38196 10723.48 MFlops/s
BM_rowReduction_12T/4K           500    3019217  8280.29 MFlops/s
BM_rowReduction_4T/10       20000000         93  1064.30 MFlops/s
BM_rowReduction_4T/80        2000000        959  6667.71 MFlops/s
BM_rowReduction_4T/640         50000      37433 10941.96 MFlops/s
BM_rowReduction_4T/4K            500    3036476  8233.23 MFlops/s
BM_rowReduction_8T/10       20000000         93  1072.47 MFlops/s
BM_rowReduction_8T/80        2000000        959  6670.04 MFlops/s
BM_rowReduction_8T/640         50000      38069 10759.37 MFlops/s
BM_rowReduction_8T/4K           1000    2758988  9061.29 MFlops/s
2016-05-16 08:55:21 -07:00