Commit Graph

908 Commits

Author SHA1 Message Date
Benoit Steiner
f6ac51a054 Made TensorEvalTo compatible with c++0x again. 2016-09-23 16:45:17 -07:00
Benoit Steiner
00d4e65f00 Deleted unused TensorMap data member 2016-09-23 16:44:45 -07:00
Benoit Steiner
1301d744f8 Made the gaussian generator usable on GPU 2016-09-22 19:04:44 -07:00
Benoit Steiner
c3ca9b1e76 Deleted some unecessary and confusing EIGEN_DEVICE_FUNC 2016-09-19 11:33:39 -07:00
Luke Iwanski
b91e021172 Merged with default. 2016-09-19 14:03:54 +01:00
Luke Iwanski
cb81975714 Partial OpenCL support via SYCL compatible with ComputeCpp CE. 2016-09-19 12:44:13 +01:00
Gael Guennebaud
18f6e47815 Fix order of "static inline". 2016-09-16 11:32:54 +02:00
Benoit Steiner
488ad7dd1b Added missing EIGEN_DEVICE_FUNC qualifiers 2016-09-14 13:35:00 -07:00
Benoit Steiner
028e299577 Fixed a bug impacting some outer reductions on GPU 2016-09-12 18:36:52 -07:00
Benoit Steiner
8321dcce76 Merged latest updates from trunk 2016-09-12 10:33:05 -07:00
Benoit Steiner
eb6ba00cc8 Properly size the list of waiters 2016-09-12 10:31:55 -07:00
Benoit Steiner
a618094b62 Added a resize method to MaxSizeVector 2016-09-12 10:30:53 -07:00
Gael Guennebaud
471eac5399 bug #1195: move NumTraits::Div<>::Cost to internal::scalar_div_cost (with some specializations in arch/SSE and arch/AVX) 2016-09-08 08:36:27 +02:00
Benoit Steiner
13df3441ae Use MaxSizeVector instead of std::vector: xcode sometimes assumes that std::vector allocates aligned memory and therefore issues aligned instruction to initialize it. This can result in random crashes when compiling with AVX instructions enabled. 2016-09-02 19:25:47 -07:00
Benoit Steiner
cadd124d73 Pulled latest update from trunk 2016-09-02 15:30:02 -07:00
Benoit Steiner
05b0518077 Made the index type an explicit template parameter to help some compilers compile the code. 2016-09-02 15:29:34 -07:00
Benoit Steiner
adf864fec0 Merged in rmlarsen/eigen (pull request PR-222)
Fix CUDA build broken by changes to min and max reduction.
2016-09-02 14:11:20 -07:00
Rasmus Munk Larsen
13e93ca8b7 Fix CUDA build broken by changes to min and max reduction. 2016-09-02 13:41:36 -07:00
Benoit Steiner
c53f783705 Updated the contraction code to support constant inputs. 2016-09-01 11:41:27 -07:00
Gael Guennebaud
46475eff9a Adjust Tensor module wrt recent change in nullary functor 2016-09-01 13:40:45 +02:00
Rasmus Munk Larsen
a1e092d1e8 Fix bugs to make min- and max reducers with correctly with IEEE infinities. 2016-08-31 15:04:16 -07:00
Gael Guennebaud
35a8e94577 bug #1167: simplify installation of header files using cmake's install(DIRECTORY ...) command. 2016-08-29 10:59:37 +02:00
Gael Guennebaud
965e595f02 Add missing log1p method 2016-08-26 14:55:00 +02:00
Benoit Steiner
34ae80179a Use array_prod instead of calling TotalSize since TotalSize is only available on DSize. 2016-08-15 10:29:14 -07:00
Benoit Steiner
fe73648c98 Fixed a bug in the documentation. 2016-08-12 10:00:43 -07:00
Benoit Steiner
64e68cbe87 Don't attempt to optimize partial reductions when the optimized implementation doesn't buy anything. 2016-08-08 19:29:59 -07:00
Benoit Steiner
ca2cee2739 Merged in ibab/eigen (pull request PR-206)
Expose real and imag methods on Tensors
2016-08-03 11:53:04 -07:00
Benoit Steiner
a20b58845f CUDA_ARCH isn't always defined, so avoid relying on it too much when figuring out which implementation to use for reductions. Instead rely on the device to tell us on which hardware version we're running. 2016-08-03 10:00:43 -07:00
Benoit Steiner
fd220dd8b0 Use numext::conj instead of std::conj 2016-08-01 18:16:16 -07:00
Benoit Steiner
e256acec7c Avoid unecessary object copies 2016-08-01 17:03:39 -07:00
Benoit Steiner
2693fd54bf bug #1266: half implementation has been moved to half_impl namespace 2016-07-29 13:45:56 -07:00
Benoit Steiner
3d3d34e442 Deleted dead code. 2016-07-25 08:53:37 -07:00
Gael Guennebaud
6d5daf32f5 bug #1255: comment out broken and unsused line. 2016-07-25 14:48:30 +02:00
Gael Guennebaud
9908020d36 Add minimal support for Array<string>, and fix Tensor<string> 2016-07-25 14:25:56 +02:00
Benoit Steiner
c6b0de2c21 Improved partial reductions in more cases 2016-07-22 17:18:20 -07:00
Gael Guennebaud
0f350a8b7e Fix CUDA compilation 2016-07-21 18:47:07 +02:00
Benoit Steiner
20f7ef2f89 An evalTo expression is only aligned iff both the lhs and the rhs are aligned. 2016-07-12 10:56:42 -07:00
Benoit Steiner
3a2dd352ae Improved the contraction mapper to properly support tensor products 2016-07-11 13:43:41 -07:00
Benoit Steiner
0bc020be9d Improved the detection of packet size in the tensor scan evaluator. 2016-07-11 12:14:56 -07:00
Gael Guennebaud
fd60966310 merge 2016-07-11 18:11:47 +02:00
Gael Guennebaud
194daa3048 Fix assertion (it did not make sense for static_val types) 2016-07-11 11:39:27 +02:00
Gael Guennebaud
18c35747ce Emulate _BitScanReverse64 for 32 bits builds 2016-07-11 11:38:04 +02:00
Gael Guennebaud
599f8ba617 Change runtime to compile-time conditional. 2016-07-08 11:39:43 +02:00
Gael Guennebaud
544935101a Fix warnings 2016-07-08 11:38:52 +02:00
Gael Guennebaud
2f7e2614e7 bug #1232: refactor special functions as a new SpecialFunctions module, currently in unsupported/. 2016-07-08 11:13:55 +02:00
Gael Guennebaud
179ebb88f9 Fix warning 2016-07-07 09:16:40 +02:00
Gael Guennebaud
ce9fc0ce14 fix clang compilation 2016-07-04 12:59:02 +02:00
Gael Guennebaud
440020474c Workaround compilation issue with msvc 2016-07-04 12:49:19 +02:00
Igor Babuschkin
78f37ca03c Expose real and imag methods on Tensors 2016-07-01 17:34:31 +01:00
Benoit Steiner
cb2d8b8fa6 Made it possible to compile reductions for an old cuda architecture and run them on a recent gpu. 2016-06-29 15:42:01 -07:00
Benoit Steiner
b2a47641ce Made the code compile when using CUDA architecture < 300 2016-06-29 15:32:47 -07:00
Igor Babuschkin
85699850d9 Add missing CUDA kernel to tensor scan op
The TensorScanOp implementation was missing a CUDA kernel launch.
This adds a simple placeholder implementation.
2016-06-29 11:54:35 +01:00
Benoit Steiner
75c333f94c Don't store the scan axis in the evaluator of the tensor scan operation since it's only used in the constructor.
Also avoid taking references to values that may becomes stale after a copy construction.
2016-06-27 10:32:38 -07:00
Benoit Steiner
7944d4431f Made the cost model cwiseMax and cwiseMin methods consts to help the PowerPC cuda compiler compile this code. 2016-08-18 13:46:36 -07:00
Benoit Steiner
647a51b426 Force the inlining of a simple accessor. 2016-08-18 12:31:02 -07:00
Benoit Steiner
a452dedb4f Merged in ibab/eigen/double-tensor-reduction (pull request PR-216)
Enable efficient Tensor reduction for doubles on the GPU (continued)
2016-08-18 12:29:54 -07:00
Igor Babuschkin
18c67df31c Fix remaining CUDA >= 300 checks 2016-08-18 17:18:30 +01:00
Igor Babuschkin
1569a7d7ab Add the necessary CUDA >= 300 checks back 2016-08-18 17:15:12 +01:00
Benoit Steiner
2b17f34574 Properly detect the type of the result of a contraction. 2016-08-16 16:00:30 -07:00
Igor Babuschkin
841e075154 Remove CUDA >= 300 checks and enable outer reductin for doubles 2016-08-06 18:07:50 +01:00
Igor Babuschkin
0425118e2a Merge upstream changes 2016-08-05 14:34:57 +01:00
Igor Babuschkin
9537e8b118 Make use of atomicExch for atomicExchCustom 2016-08-05 14:29:58 +01:00
Igor Babuschkin
eeb0d880ee Enable efficient Tensor reduction for doubles 2016-07-01 19:08:26 +01:00
Rasmus Munk Larsen
a9c1e4d7b7 Return -1 from CurrentThreadId when called by thread outside the pool. 2016-06-23 16:40:07 -07:00
Rasmus Munk Larsen
d39df320d2 Resolve merge. 2016-06-23 15:08:03 -07:00
Gael Guennebaud
360a743a10 bug #1241: does not emmit anything for empty tensors 2016-06-23 18:47:31 +02:00
Gael Guennebaud
7c6561485a merge PR 194 2016-06-23 15:29:57 +02:00
Benoit Steiner
a29a2cb4ff Silenced a couple of compilation warnings generated by xcode 2016-06-22 16:43:02 -07:00
Benoit Steiner
f8fcd6b32d Turned the constructor of the PerThread struct into what is effectively a constant expression to make the code compatible with a wider range of compilers 2016-06-22 16:03:11 -07:00
Benoit Steiner
c58df31747 Handle empty tensors in the print functions 2016-06-21 09:22:43 -07:00
Benoit Steiner
de32f8d656 Fixed the printing of rank-0 tensors 2016-06-20 10:46:45 -07:00
Benoit Steiner
7d495d890a Merged in ibab/eigen (pull request PR-197)
Implement exclusive scan option for Tensor library
2016-06-14 17:54:59 -07:00
Benoit Steiner
aedc5be1d6 Avoid generating pseudo random numbers that are multiple of 5: this helps
spread the load over multiple cpus without havind to rely on work stealing.
2016-06-14 17:51:47 -07:00
Igor Babuschkin
c4d10e921f Implement exclusive scan option 2016-06-14 19:44:07 +01:00
Gael Guennebaud
76236cdea4 merge 2016-06-14 15:33:47 +02:00
Gael Guennebaud
5d38203735 Update Tensor module to use bind1st_op and bind2nd_op 2016-06-14 15:06:03 +02:00
Benoit Steiner
65d33e5898 Merged in ibab/eigen (pull request PR-195)
Add small fixes to TensorScanOp
2016-06-10 19:31:17 -07:00
Benoit Steiner
a05607875a Don't refer to the half2 type unless it's been defined 2016-06-10 11:53:56 -07:00
Igor Babuschkin
86aedc9282 Add small fixes to TensorScanOp 2016-06-07 20:06:38 +01:00
Benoit Steiner
84b2060a9e Fixed compilation error with gcc 4.4 2016-06-06 17:16:19 -07:00
Benoit Steiner
7ef9f47b58 Misc small improvements to the reduction code. 2016-06-06 14:09:46 -07:00
Benoit Steiner
9137f560f0 Moved assertions to the constructor to make the code more portable 2016-06-06 07:26:48 -07:00
Rasmus Munk Larsen
f1f2ff8208 size_t -> int 2016-06-03 18:06:37 -07:00
Rasmus Munk Larsen
76308e7fd2 Add CurrentThreadId and NumThreads methods to Eigen threadpools and TensorDeviceThreadPool. 2016-06-03 16:28:58 -07:00
Benoit Steiner
37638dafd7 Simplified the code that dispatches vectorized reductions on GPU 2016-06-09 10:29:52 -07:00
Benoit Steiner
66796e843d Fixed definition of some of the reducer_traits 2016-06-09 08:50:01 -07:00
Benoit Steiner
14a112ee15 Use signed integers more consistently to encode the number of threads to use to evaluate a tensor expression. 2016-06-09 08:25:22 -07:00
Benoit Steiner
8f92c26319 Improved code formatting 2016-06-09 08:23:42 -07:00
Benoit Steiner
aa33446dac Improved support for vectorization of 16-bit floats 2016-06-09 08:22:27 -07:00
Benoit Steiner
d6d39c7ddb Added missing EIGEN_DEVICE_FUNC 2016-06-07 14:35:08 -07:00
Benoit Steiner
c3c8ad8046 Align the first element of the Waiter struct instead of padding it. This reduces its memory footprint a bit while achieving the goal of preventing false sharing 2016-06-02 21:17:41 -07:00
Eugene Brevdo
39baff850c Add TernaryFunctors and the betainc SpecialFunction.
TernaryFunctors and their executors allow operations on 3-tuples of inputs.
API fully implemented for Arrays and Tensors based on binary functors.

Ported the cephes betainc function (regularized incomplete beta
integral) to Eigen, with support for CPU and GPU, floats, doubles, and
half types.

Added unit tests in array.cpp and cxx11_tensor_cuda.cu


Collapsed revision
* Merged helper methods for betainc across floats and doubles.
* Added TensorGlobalFunctions with betainc().  Removed betainc() from TensorBase.
* Clean up CwiseTernaryOp checks, change igamma_helper to cephes_helper.
* betainc: merge incbcf and incbd into incbeta_cfe.  and more cleanup.
* Update TernaryOp and SpecialFunctions (betainc) based on review comments.
2016-06-02 17:04:19 -07:00
Benoit Steiner
c21eaedce6 Use array_prod to compute the number of elements contained in the input tensor expression 2016-06-04 07:47:04 -07:00
Benoit Steiner
36a4500822 Merged in ibab/eigen (pull request PR-192)
Add generic scan method
2016-06-03 17:28:33 -07:00
Benoit Steiner
c2a102345f Improved the performance of full reductions.
AFTER:
BM_fullReduction/10        4541       4543     154017  21.0M items/s
BM_fullReduction/64        5191       5193     100000  752.5M items/s
BM_fullReduction/512       9588       9588      71361  25.5G items/s
BM_fullReduction/4k      244314     244281       2863  64.0G items/s
BM_fullReduction/5k      359382     359363       1946  64.8G items/s

BEFORE:
BM_fullReduction/10        9085       9087      74395  10.5M items/s
BM_fullReduction/64        9478       9478      72014  412.1M items/s
BM_fullReduction/512      14643      14646      46902  16.7G items/s
BM_fullReduction/4k      260338     260384       2678  60.0G items/s
BM_fullReduction/5k      385076     385178       1818  60.5G items/s
2016-06-03 17:27:08 -07:00
Igor Babuschkin
dc03b8f3a1 Add generic scan method 2016-06-03 17:37:04 +01:00
Rasmus Munk Larsen
811aadbe00 Add syntactic sugar to Eigen tensors to allow more natural syntax.
Specifically, this enables expressions involving:

scalar + tensor
scalar * tensor
scalar / tensor
scalar - tensor
2016-06-02 12:41:28 -07:00
Igor Babuschkin
fbd7ed6ff7 Add tensor scan op
This is the initial implementation a generic scan operation.
Based on this, cumsum and cumprod method have been added to TensorBase.
2016-06-02 13:35:47 +01:00
Benoit Steiner
0ed08fd281 Use a single PacketSize variable 2016-06-01 21:19:05 -07:00
Benoit Steiner
8f6fedc55f Fixed compilation warning 2016-06-01 21:14:46 -07:00
Benoit Steiner
873e6ac54b Silenced compilation warning generated by nvcc. 2016-06-01 14:20:50 -07:00
Benoit Steiner
d27b0ad4c8 Added support for mean reductions on fp16 2016-06-01 11:12:07 -07:00
Benoit Steiner
5aeb3687c4 Only enable optimized reductions of fp16 if the reduction functor supports them 2016-05-31 10:33:40 -07:00
Benoit Steiner
e2946d962d Reimplement clamp as a static function. 2016-05-27 12:58:43 -07:00
Benoit Steiner
e96d36d4cd Use NULL instead of nullptr to preserve the compatibility with cxx03 2016-05-27 12:54:06 -07:00
Benoit Steiner
abc815798b Added a new operation to enable more powerful tensorindexing. 2016-05-27 12:22:25 -07:00
Benoit Steiner
1ae2567861 Fixed some compilation warnings 2016-05-26 15:57:19 -07:00
Benoit Steiner
1a47844529 Preserve the ability to vectorize the evaluation of an expression even when it involves a cast that isn't vectorized (e.g fp16 to float) 2016-05-26 14:37:09 -07:00
Benoit Steiner
36369ab63c Resolved merge conflicts 2016-05-26 13:39:39 -07:00
Benoit Steiner
28fcb5ca2a Merged latest reduction improvements 2016-05-26 12:19:33 -07:00
Benoit Steiner
c1c7f06c35 Improved the performance of inner reductions. 2016-05-26 11:53:59 -07:00
Benoit Steiner
8288b0aec2 Code cleanup. 2016-05-26 09:00:04 -07:00
Benoit Steiner
2d7ed54ba2 Made the static storage class qualifier come first. 2016-05-25 22:16:15 -07:00
Benoit Steiner
e1fca8866e Deleted unnecessary explicit qualifiers. 2016-05-25 22:15:26 -07:00
Benoit Steiner
9b0aaf5113 Don't mark inline functions as static since it confuses the ICC compiler 2016-05-25 22:10:11 -07:00
Benoit Steiner
037a463fd5 Marked unused variables as such 2016-05-25 22:07:48 -07:00
Benoit Steiner
3ac4045272 Made the IndexPair code compile in non cxx11 mode 2016-05-25 15:15:12 -07:00
Benoit Steiner
66556d0e05 Made the index pair list code more portable accross various compilers 2016-05-25 14:34:27 -07:00
Benoit Steiner
034aa3b2c0 Improved the performance of tensor padding 2016-05-25 11:43:08 -07:00
Benoit Steiner
58026905ae Added support for statically known lists of pairs of indices 2016-05-25 11:04:14 -07:00
Benoit Steiner
0835667329 There is no need to make the fp16 full reduction kernel a static function. 2016-05-24 23:11:56 -07:00
Benoit Steiner
b5d6b52a4d Fixed compilation warning 2016-05-24 23:10:57 -07:00
Benoit Steiner
a09cbf9905 Merged in rmlarsen/eigen (pull request PR-188)
Minor cleanups: 1. Get rid of a few unused variables. 2. Get rid of last uses of EIGEN_USE_COST_MODEL.
2016-05-23 12:55:12 -07:00
Christoph Hertzberg
25a03c02d6 Fix some sign-compare warnings 2016-05-22 16:42:27 +02:00
Gael Guennebaud
ccaace03c9 Make EIGEN_HAS_CONSTEXPR user configurable 2016-05-20 15:10:08 +02:00
Gael Guennebaud
c3410804cd Make EIGEN_HAS_VARIADIC_TEMPLATES user configurable 2016-05-20 15:05:38 +02:00
Gael Guennebaud
48bf5ec216 Make EIGEN_HAS_RVALUE_REFERENCES user configurable 2016-05-20 14:54:20 +02:00
Gael Guennebaud
f43ae88892 Rename EIGEN_HAVE_RVALUE_REFERENCES to EIGEN_HAS_RVALUE_REFERENCES 2016-05-20 14:48:51 +02:00
Rasmus Larsen
b1e080c752 Merged eigen/eigen into default 2016-05-18 15:21:50 -07:00
Rasmus Munk Larsen
5624219b6b Merge. 2016-05-18 15:16:06 -07:00
Rasmus Munk Larsen
7df811cfe5 Minor cleanups: 1. Get rid of unused variables. 2. Get rid of last uses of EIGEN_USE_COST_MODEL. 2016-05-18 15:09:48 -07:00
Benoit Steiner
bb3ff8e9d9 Advertize the packet api of the tensor reducers iff the corresponding packet primitives are available. 2016-05-18 14:52:49 -07:00
Rasmus Munk Larsen
f519fca72b Reduce overhead for small tensors and cheap ops by short-circuiting the const computation and block size calculation in parallelFor. 2016-05-17 16:06:00 -07:00
Benoit Steiner
86ae94462e #if defined(EIGEN_USE_NONBLOCKING_THREAD_POOL) is now #if !defined(EIGEN_USE_SIMPLE_THREAD_POOL): the non blocking thread pool is the default since it's more scalable, and one needs to request the old thread pool explicitly. 2016-05-17 14:06:15 -07:00
Benoit Steiner
997c335970 Fixed compilation error 2016-05-17 12:54:18 -07:00
Benoit Steiner
ebf6ada5ee Fixed compilation error in the tensor thread pool 2016-05-17 12:33:46 -07:00
Rasmus Munk Larsen
0bb61b04ca Merge upstream. 2016-05-17 10:26:10 -07:00
Rasmus Munk Larsen
0dbd68145f Roll back changes to core. Move include of TensorFunctors.h up to satisfy dependence in TensorCostModel.h. 2016-05-17 10:25:19 -07:00
Rasmus Larsen
00228f2506 Merged eigen/eigen into default 2016-05-17 09:49:31 -07:00
Benoit Steiner
e7e64c3277 Enable the use of the packet api to evaluate tensor broadcasts. This speed things up quite a bit:
Before"
M_broadcasting/10        500000       3690    27.10 MFlops/s
BM_broadcasting/80        500000       4014  1594.24 MFlops/s
BM_broadcasting/640       100000      14770 27731.35 MFlops/s
BM_broadcasting/4K          5000     632711 39512.48 MFlops/s
After:
BM_broadcasting/10        500000       4287    23.33 MFlops/s
BM_broadcasting/80        500000       4455  1436.41 MFlops/s
BM_broadcasting/640       200000      10195 40173.01 MFlops/s
BM_broadcasting/4K          5000     423746 58997.57 MFlops/s
2016-05-17 09:24:35 -07:00
Benoit Steiner
5fa27574dd Allow vectorized padding on GPU. This helps speed things up a little
Before:
BM_padding/10            5000000        460   217.03 MFlops/s
BM_padding/80            5000000        460 13899.40 MFlops/s
BM_padding/640           5000000        461 888421.17 MFlops/s
BM_padding/4K            5000000        460 54316322.55 MFlops/s
After:
BM_padding/10            5000000        454   220.20 MFlops/s
BM_padding/80            5000000        455 14039.86 MFlops/s
BM_padding/640           5000000        452 904968.83 MFlops/s
BM_padding/4K            5000000        411 60750049.21 MFlops/s
2016-05-17 09:17:26 -07:00
Benoit Steiner
8d06c02ffd Allow vectorized padding on GPU. This helps speed things up a little.
Before:
BM_padding/10            5000000        460   217.03 MFlops/s
BM_padding/80            5000000        460 13899.40 MFlops/s
BM_padding/640           5000000        461 888421.17 MFlops/s
BM_padding/4K            5000000        460 54316322.55 MFlops/s
After:
BM_padding/10            5000000        454   220.20 MFlops/s
BM_padding/80            5000000        455 14039.86 MFlops/s
BM_padding/640           5000000        452 904968.83 MFlops/s
BM_padding/4K            5000000        411 60750049.21 MFlops/s
2016-05-17 09:13:27 -07:00
Benoit Steiner
a80d875916 Added missing costPerCoeff method 2016-05-16 09:31:10 -07:00
Benoit Steiner
83ef39e055 Turn on the cost model by default. This results in some significant speedups for smaller tensors. For example, below are the results for the various tensor reductions.
Before:
BM_colReduction_12T/10       1000000       1949    51.29 MFlops/s
BM_colReduction_12T/80        100000      15636   409.29 MFlops/s
BM_colReduction_12T/640        20000      95100  4307.01 MFlops/s
BM_colReduction_12T/4K           500    4573423  5466.36 MFlops/s
BM_colReduction_4T/10        1000000       1867    53.56 MFlops/s
BM_colReduction_4T/80         500000       5288  1210.11 MFlops/s
BM_colReduction_4T/640         10000     106924  3830.75 MFlops/s
BM_colReduction_4T/4K            500    9946374  2513.48 MFlops/s
BM_colReduction_8T/10        1000000       1912    52.30 MFlops/s
BM_colReduction_8T/80         200000       8354   766.09 MFlops/s
BM_colReduction_8T/640         20000      85063  4815.22 MFlops/s
BM_colReduction_8T/4K            500    5445216  4591.19 MFlops/s
BM_rowReduction_12T/10       1000000       2041    48.99 MFlops/s
BM_rowReduction_12T/80        100000      15426   414.87 MFlops/s
BM_rowReduction_12T/640        50000      39117 10470.98 MFlops/s
BM_rowReduction_12T/4K           500    3034298  8239.14 MFlops/s
BM_rowReduction_4T/10        1000000       1834    54.51 MFlops/s
BM_rowReduction_4T/80         500000       5406  1183.81 MFlops/s
BM_rowReduction_4T/640         50000      35017 11697.16 MFlops/s
BM_rowReduction_4T/4K            500    3428527  7291.76 MFlops/s
BM_rowReduction_8T/10        1000000       1925    51.95 MFlops/s
BM_rowReduction_8T/80         200000       8519   751.23 MFlops/s
BM_rowReduction_8T/640         50000      33441 12248.42 MFlops/s
BM_rowReduction_8T/4K           1000    2852841  8763.19 MFlops/s


After:
BM_colReduction_12T/10      50000000         59  1678.30 MFlops/s
BM_colReduction_12T/80       5000000        725  8822.71 MFlops/s
BM_colReduction_12T/640        20000      90882  4506.93 MFlops/s
BM_colReduction_12T/4K           500    4668855  5354.63 MFlops/s
BM_colReduction_4T/10       50000000         59  1687.37 MFlops/s
BM_colReduction_4T/80        5000000        737  8681.24 MFlops/s
BM_colReduction_4T/640         50000     108637  3770.34 MFlops/s
BM_colReduction_4T/4K            500    7912954  3159.38 MFlops/s
BM_colReduction_8T/10       50000000         60  1657.21 MFlops/s
BM_colReduction_8T/80        5000000        726  8812.48 MFlops/s
BM_colReduction_8T/640         20000      91451  4478.90 MFlops/s
BM_colReduction_8T/4K            500    5441692  4594.16 MFlops/s
BM_rowReduction_12T/10      20000000         93  1065.28 MFlops/s
BM_rowReduction_12T/80       2000000        950  6730.96 MFlops/s
BM_rowReduction_12T/640        50000      38196 10723.48 MFlops/s
BM_rowReduction_12T/4K           500    3019217  8280.29 MFlops/s
BM_rowReduction_4T/10       20000000         93  1064.30 MFlops/s
BM_rowReduction_4T/80        2000000        959  6667.71 MFlops/s
BM_rowReduction_4T/640         50000      37433 10941.96 MFlops/s
BM_rowReduction_4T/4K            500    3036476  8233.23 MFlops/s
BM_rowReduction_8T/10       20000000         93  1072.47 MFlops/s
BM_rowReduction_8T/80        2000000        959  6670.04 MFlops/s
BM_rowReduction_8T/640         50000      38069 10759.37 MFlops/s
BM_rowReduction_8T/4K           1000    2758988  9061.29 MFlops/s
2016-05-16 08:55:21 -07:00
Benoit Steiner
b789a26804 Fixed syntax error 2016-05-16 08:51:08 -07:00
Benoit Steiner
83dfb40f66 Turnon the new thread pool by default since it scales much better over multiple cores. It is still possible to revert to the old thread pool by compiling with the EIGEN_USE_SIMPLE_THREAD_POOL define. 2016-05-13 17:23:15 -07:00
Benoit Steiner
97605c7b27 New multithreaded contraction that doesn't rely on the thread pool to run the closure in the order in which they are enqueued. This is needed in order to switch to the new non blocking thread pool since this new thread pool can execute the closure in any order. 2016-05-13 17:11:29 -07:00
Benoit Steiner
c4fc8b70ec Removed unnecessary thread synchronization 2016-05-13 10:49:38 -07:00
Benoit Steiner
7aa3557d31 Fixed compilation errors triggered by old versions of gcc 2016-05-12 18:59:04 -07:00
Rasmus Munk Larsen
5005b27fc8 Diasbled cost model by accident. Revert. 2016-05-12 16:55:21 -07:00
Rasmus Munk Larsen
989e419328 Address comments by bsteiner. 2016-05-12 16:54:19 -07:00
Rasmus Munk Larsen
e55deb21c5 Improvements to parallelFor.
Move some scalar functors from TensorFunctors. to Eigen core.
2016-05-12 14:07:22 -07:00
Benoit Steiner
ae9688f313 Worked around a compilation error triggered by nvcc when compiling a tensor concatenation kernel. 2016-05-12 12:06:51 -07:00
Benoit Steiner
2a54b70d45 Fixed potential race condition in the non blocking thread pool 2016-05-12 11:45:48 -07:00
Benoit Steiner
a071629fec Replace implicit cast with an explicit one 2016-05-12 10:40:07 -07:00
Benoit Steiner
2f9401b061 Worked around compilation errors with older versions of gcc 2016-05-11 23:39:20 -07:00
Benoit Steiner
09653e1f82 Improved the portability of the tensor code 2016-05-11 23:29:09 -07:00
Benoit Steiner
b6a517c47d Added the ability to load fp16 using the texture path.
Improved the performance of some reductions on fp16
2016-05-11 21:26:48 -07:00
Christoph Hertzberg
2150f13d65 fixed some double-promotion and sign-compare warnings 2016-05-11 23:02:26 +02:00
Benoit Steiner
217d984abc Fixed a typo in my previous commit 2016-05-11 10:22:15 -07:00
Benoit Steiner
08348b4e48 Fix potential race condition in the CUDA reduction code. 2016-05-11 10:08:51 -07:00
Benoit Steiner
6a5717dc74 Explicitely initialize all the atomic variables. 2016-05-11 10:04:41 -07:00
Benoit Steiner
4ede059de1 Properly gate the use of half2. 2016-05-10 17:04:01 -07:00
Benoit Steiner
661e710092 Added support for fp16 to the sigmoid functor. 2016-05-10 12:25:27 -07:00
Benoit Steiner
0eb69b7552 Small improvement to the full reduction of fp16 2016-05-10 11:58:18 -07:00
Benoit Steiner
4013b8feca Simplified the reduction code a little. 2016-05-10 09:40:42 -07:00
Benoit Steiner
4670d7d5ce Improved the performance of full reductions on GPU:
Before:
BM_fullReduction/10       200000      11751     8.51 MFlops/s
BM_fullReduction/80         5000     523385    12.23 MFlops/s
BM_fullReduction/640          50   36179326    11.32 MFlops/s
BM_fullReduction/4K            1 2173517195    11.50 MFlops/s

After:
BM_fullReduction/10       500000       5987    16.70 MFlops/s
BM_fullReduction/80       200000      10636   601.73 MFlops/s
BM_fullReduction/640       50000      58428  7010.31 MFlops/s
BM_fullReduction/4K         1000    2006106 12461.95 MFlops/s
2016-05-09 17:09:54 -07:00
Benoit Steiner
c3859a2b58 Added the ability to use a scratch buffer in cuda kernels 2016-05-09 17:05:53 -07:00
Benoit Steiner
ba95e43ea2 Added a new parallelFor api to the thread pool device. 2016-05-09 10:45:12 -07:00
Benoit Steiner
dc7dbc2df7 Optimized the non blocking thread pool:
* Use a pseudo-random permutation of queue indices during random stealing. This ensures that all the queues are considered.
 * Directly pop from a non-empty queue when we are waiting for work,
instead of first noticing that there is a non-empty queue and
then doing another round of random stealing to re-discover the non-empty
queue.
 * Steal only 1 task from a remote queue instead of half of tasks.
2016-05-09 10:17:17 -07:00
Benoit Steiner
c54ae65c83 Marked a few tensor operations as read only 2016-05-05 17:18:47 -07:00
Benoit Steiner
910e013506 Relaxed an assertion that was tighter that necessary. 2016-05-05 15:38:16 -07:00
Benoit Steiner
a4d6e8fef0 Strongly hint but don't force the compiler to unroll a some loops in the tensor executor. This results in up to 27% faster code. 2016-05-05 09:25:55 -07:00
Benoit Steiner
f363e533aa Added tests for full contractions using thread pools and gpu devices.
Fixed a couple of issues in the corresponding code.
2016-05-05 09:05:45 -07:00
Benoit Steiner
06d774bf58 Updated the contraction code to ensure that full contraction return a tensor of rank 0 2016-05-05 08:37:47 -07:00
Benoit Steiner
dd2b45feed Removed extraneous 'explicit' keywords 2016-05-04 16:57:52 -07:00
Benoit Steiner
968ec1c2ae Use numext::isfinite instead of std::isfinite 2016-05-03 19:56:40 -07:00
Benoit Steiner
aad9a04da4 Deleted superfluous explicit keyword. 2016-05-03 09:37:19 -07:00
Benoit Steiner
8a9228ed9b Fixed compilation error 2016-05-01 14:48:01 -07:00
Benoit Steiner
d6c9596fd8 Added missing accessors to fixed sized tensors 2016-04-29 18:51:33 -07:00
Benoit Steiner
17fe7f354e Deleted trailing commas 2016-04-29 18:39:01 -07:00
Benoit Steiner
e5f71aa6b2 Deleted useless trailing commas 2016-04-29 18:36:10 -07:00
Benoit Steiner
44f592dceb Deleted unnecessary trailing commas. 2016-04-29 18:33:46 -07:00
Benoit Steiner
f100d1494c Return the proper size (ie 1) for tensors of rank 0 2016-04-29 18:14:33 -07:00
Benoit Steiner
a8c0405cf5 Deleted unused default values for template parameters 2016-04-29 16:34:43 -07:00
Benoit Steiner
c07404f6a1 Restore Tensor support for non c++11 compilers 2016-04-29 15:19:19 -07:00
Benoit Steiner
ba32ded021 Fixed include path 2016-04-29 15:11:09 -07:00
Gael Guennebaud
318e65e0ae Fix missing inclusion of Eigen/Core 2016-04-27 23:05:40 +02:00
Rasmus Munk Larsen
463738ccbe Use computeProductBlockingSizes to compute blocking for both ShardByCol and ShardByRow cases. 2016-04-27 12:26:18 -07:00
Gael Guennebaud
3dddd34133 Refactor the unsupported CXX11/Core module to internal headers only. 2016-04-26 11:20:25 +02:00
Benoit Steiner
4a164d2c46 Fixed the partial evaluation of non vectorizable tensor subexpressions 2016-04-25 10:43:03 -07:00
Benoit Steiner
fd9401f260 Refined the cost of the striding operation. 2016-04-25 09:16:08 -07:00
Benoit Steiner
4bbc97be5e Provide access to the base threadpool classes 2016-04-21 17:59:33 -07:00
Benoit Steiner
33adce5c3a Added the ability to switch to the new thread pool with a #define 2016-04-21 11:59:58 -07:00
Benoit Steiner
f670613e4b Fixed several compilation warnings 2016-04-21 11:03:02 -07:00
Benoit Steiner
2dde1b1028 Don't crash when attempting to reduce empty tensors. 2016-04-20 18:08:20 -07:00
Benoit Steiner
c7c2054bb5 Started to implement a portable way to yield. 2016-04-19 17:59:58 -07:00
Benoit Steiner
2b72163028 Implemented a more portable version of thread local variables 2016-04-19 15:56:02 -07:00
Benoit Steiner
5b1106c56b Fixed a compilation error with nvcc 7. 2016-04-19 14:57:57 -07:00
Benoit Steiner
7129d998db Simplified the code that launches cuda kernels. 2016-04-19 14:55:21 -07:00