Commit Graph

3034 Commits

Author SHA1 Message Date
Jens Wehner
53ad9c75b4 included unordered_map header 2021-08-27 16:53:28 +00:00
jenswehner
9abf4d0bec made RandomSetter C++11 compatible 2021-08-25 20:24:55 +00:00
Antonio Sanchez
eeacbd26c8 Bump CMake files to at least c++11.
Removed all configurations that explicitly test or set the c++ standard
flags. The only place the standard is now configured is at the top of
the main `CMakeLists.txt` file, which can easily be updated (e.g. if
we decide to move to c++14+). This can also be set via command-line using
```
> cmake -DCMAKE_CXX_STANDARD 14
```

Kept the `EIGEN_TEST_CXX11` flag for now - that still controls whether to
build/run the `cxx11_*` tests.  We will likely end up renaming these
tests and removing the `CXX11` subfolder.
2021-08-25 20:07:48 +00:00
jenswehner
90b3b6b572 added doxygen flowchart 2021-08-24 17:11:51 +00:00
jenswehner
d85de1ef56 removed sparse dynamic matrix 2021-08-24 10:33:00 +02:00
jenswehner
e3e74001f7 added includes for unordered_map 2021-08-10 13:34:57 +02:00
Alexander Karatarakis
4ba872bd75 Avoid leading underscore followed by cap in template identifiers 2021-08-04 22:41:52 +00:00
Antonio Sanchez
31f796ebef Fix MPReal detection and support.
The latest version of `mpreal` has a bug that breaks `min`/`max`.
It also breaks with the latest dev version of `mpfr`. Here we
add `FindMPREAL.cmake` which searches for the library and tests if
compilation works.

Removed our internal copy of `mpreal.h` under `unsupported/test`, as
it is out-of-sync with the latest, and similarly breaks with
the latest `mpfr`.  It would be best to use the installed version
of `mpreal` anyways, since that's what we actually want to test.

Fixes #2282.
2021-08-03 17:55:03 +00:00
Antonio Sanchez
8cf6cb27ba Fix TriSycl CMake files.
This is to enable compiling with the latest trisycl. `FindTriSYCL.cmake` was
broken by commit 00f32752, which modified `add_sycl_to_target` for ComputeCPP.
This makes the corresponding modifications for trisycl to make them consistent.

Also, trisycl now requires c++17.
2021-08-03 16:44:29 +00:00
Alexander Karatarakis
f357283d31 _DerType -> DerivativeType as underscore-followed-by-caps is a reserved identifier 2021-07-29 18:02:04 +00:00
Antonio Sanchez
1fd5ce1002 For GpuDevice::fill, use a single memset if all bytes are equal.
The original `fill` implementation introduced a 5x regression on my
nvidia Quadro K1200.  @rohitsan reported up to 100x regression for
HIP.  This restores performance.
2021-07-10 13:37:16 +00:00
Antonio Sanchez
9c22795d65 Put attach/detach buffer back in for TensorDeviceSycl.
Also added a test to verify the original buffer is updated correctly.
2021-07-09 10:00:05 -07:00
Antonio Sanchez
1e6c6c1576 Replace memset with fill to work for non-trivial scalars.
For custom scalars, zero is not necessarily represented by
a zeroed-out memory block (e.g. gnu MPFR). We therefore
cannot rely on `memset` if we want to fill a matrix or tensor
with zeroes. Instead, we should rely on `fill`, which for trivial
types does end up getting converted to a `memset` under-the-hood
(at least with gcc/clang).

Requires adding a `fill(begin, end, v)` to `TensorDevice`.

Replaced all potentially bad instances of memset with fill.

Fixes #2245.
2021-07-08 18:34:41 +00:00
Jonas Harsch
e9c9a3130b Removed superfluous boolean degenerate in TensorMorphing.h. 2021-07-08 18:02:58 +00:00
Antonio Sanchez
f5a9873bbb Fix Tensor documentation page.
The extra [TOC] tag is generating a huge floating duplicated
table-of-contents, which obscures the majority of the page
(see bottom of https://eigen.tuxfamily.org/dox/unsupported/eigen_tensors.html).
Remove it.

Also, headers do not support markup (see
[doxygen bug](https://github.com/doxygen/doxygen/issues/7467)), so
backticks like
```
```
end up generating titles that looks like
```
Constructor <tt>Tensor<double,2></tt>
```
Removing backticks for now.  To generate proper formatted headers, we
must directly use html instead of markdown, i.e.
```
<h2>Constructor <code>Tensor&lt;double,2&gt;</code></h2>
```
which is ugly.

Fixes #2254.
2021-07-03 04:39:22 +00:00
Jonas Harsch
aab747021b Don't crash when attempting to shuffle an empty tensor. 2021-07-02 20:33:52 +00:00
Antonio Sanchez
6035da5283 Fix compile issues for gcc 4.8.
- Move constructors can only be defaulted as NOEXCEPT if all members
have NOEXCEPT move constructors.
- gcc 4.8 has some funny parsing bug in `a < b->c`, thinking `b-` is a template parameter.
2021-07-01 22:58:14 +00:00
Antonio Sanchez
3a087ccb99 Modify tensor argmin/argmax to always return first occurence.
As written, depending on multithreading/gpu, the returned index from
`argmin`/`argmax` is not currently stable.  Here we modify the functors
to always keep the first occurence (i.e. if the value is equal to the
current min/max, then keep the one with the smallest index).

This is otherwise causing unpredictable results in some TF tests.
2021-06-29 10:36:20 -07:00
Antonio Sanchez
e9ab4278b7 Rewrite balancer to avoid overflows.
The previous balancer overflowed for large row/column norms.
Modified to prevent that.

Fixes #2273.
2021-06-21 17:29:55 +00:00
jenswehner
175f0cc1e9 changed documentation to make example compile 2021-06-16 11:45:06 +02:00
Antonio Sanchez
954879183b Fix placement of permanent GPU defines. 2021-06-15 12:17:09 -07:00
Rasmus Munk Larsen
13fb5ab92c Fix more enum arithmetic. 2021-06-15 09:09:31 -07:00
Antonio Sanchez
514977f31b Add ability to permanently enable HIP/CUDA gpu* defines.
When using Eigen for gpu, these simplify portability.  If
`EIGEN_PERMANENTLY_ENABLE_GPU_HIP_CUDA_DEFINES` is set, then
we do not undefine them.
2021-06-11 17:19:54 +00:00
Antonio Sanchez
6aec83263d Allow custom TENSOR_CONTRACTION_DISPATCH macro.
Currently TF lite needs to hack around with the Tensor headers in order
to customize the contraction dispatch method. Here we add simple `#ifndef`
guards to allow them to provide their own dispatch prior to inclusion.
2021-06-11 17:02:19 +00:00
Rohit Santhanam
c8d40a7bf1 Removed dead code from GPU float16 unit test. 2021-05-28 20:06:48 +00:00
Nathan Luehr
972cf0c28a Fix calls to device functions from host code 2021-05-11 22:47:49 +00:00
Antonio Sanchez
0eba8a1fe3 Clean up gpu device properties.
Made a class and singleton to encapsulate initialization and retrieval of
device properties.

Related to !481, which already changed the API to address a static
linkage issue.
2021-05-07 17:51:29 +00:00
Antonio Sanchez
e3b7f59659 Simplify TensorRandom and remove time-dependence.
Time-dependence prevents tests from being repeatable. This has long
been an issue with debugging the tensor tests. Removing this will allow
future tests to be repeatable in the usual way.

Also, the recently added macros in !476 are causing headaches across different
platforms. For example, checking `_XOPEN_SOURCE` is leading to multiple
ambiguous macro errors across Google, and `_DEFAULT_SOURCE`/`_SVID_SOURCE`/`_BSD_SOURCE`
are sometimes defined with values, sometimes defined as empty, and sometimes
not defined at all when they probably should be.  This is leading to
multiple build breakages.

The simplest approach is to generate a seed via
`Eigen::internal::random<uint64_t>()` if on CPU. For GPU, we use a
hash based on the current thread ID (since `rand()` isn't supported
on GPU).

Fixes #1602.
2021-05-04 13:34:49 -07:00
Turing Eret
3804ca0d90 Fix for issue with static global variables in TensorDeviceGpu.h
m_deviceProperties and m_devicePropInitialized are defined as global
statics which will define multiple copies which can cause issues if
initializeDeviceProp() is called in one translation unit and then
m_deviceProperties is used in a different translation unit. Added
inline functions getDeviceProperties() and getDevicePropInitialized()
which defines those variables as static locals. As per the C++ standard
7.1.2/4, a static local declared in an inline function always refers
to the same object, so this should be safer. Credit to Sun Chenggen
for this fix.

This fixes issue #1475.
2021-04-23 07:43:35 -06:00
Antonio Sanchez
045c0609b5 Check existence of BSD random before use.
`TensorRandom` currently relies on BSD `random()`, which is not always
available.  The [linux manpage](https://man7.org/linux/man-pages/man3/srandom.3.html)
gives the glibc condition:
```
_XOPEN_SOURCE >= 500
               || /* Glibc since 2.19: */ _DEFAULT_SOURCE
	       || /* Glibc <= 2.19: */ _SVID_SOURCE ||  _BSD_SOURCE
```
In particular, this was failing to compile for MinGW via msys2. If not
available, we fall back to using `rand()`.
2021-04-22 20:42:12 +00:00
Antonio Sanchez
69adf26aa3 Modify googlehash use to account for namespace issues.
The namespace declaration for googlehash is a configurable macro that
can be disabled.  In particular, it is disabled within google, causing
compile errors since `dense_hash_map`/`sparse_hash_map` are then in
the global namespace instead of in `::google`.

Here we play a bit of gynastics to allow for both `google::*_hash_map`
and `*_hash_map`, while limiting namespace polution.  Symbols within
the `::google` namespace are imported into `Eigen::google`.

We also remove checks based on `_SPARSE_HASH_MAP_H_`, as this is
fragile, and instead require `EIGEN_GOOGLEHASH_SUPPORT` to be
defined.
2021-04-12 19:00:39 -07:00
Rasmus Munk Larsen
a2c0542010 Fix typo in TensorDimensions.h 2021-04-12 18:59:56 +00:00
Rohit Santhanam
dfd6720d82 Fix for float16 GPU unit test. 2021-04-12 10:19:06 +00:00
Jens Wehner
f6fc66aa75 fixed doxygen for unsupported iterative solver module 2021-04-11 16:26:14 +00:00
Rohit Santhanam
2859db0220 This fixes an issue where the compiler was not choosing the GPU specific specialization of ScanLauncher.
The issue was discovered when the GPU scan unit test was run and resulted in a segmentation fault.

The segmantation fault occurred because the unit test allocated GPU memory and passed a pointer to that memory to the computation that it presumed would execute on the GPU.

But because of the issue, the computation was scheduled to execute on the CPU so a situation was constructed where the CPU attempted to access a GPU memory location.

The fix expands the GPU specific ScanLauncher specialization to handle cases where vectorization is enabled.

Previously, the GPU specialization is chosen only if Vectorization is not used.
2021-04-08 15:14:48 +00:00
Steve Bronder
e7b8643d70 Revert "Revert "Adds EIGEN_CONSTEXPR and EIGEN_NOEXCEPT to rows(), cols(), innerStride(), outerStride(), and size()""
This reverts commit 5f0b4a4010.
2021-03-24 18:14:56 +00:00
Jens Wehner
c0a889890f Fixed output of complex matrices 2021-03-15 21:51:55 +00:00
Antonio Sanchez
543e34ab9d Re-implement move assignments.
The original swap approach leads to potential undefined behavior (reading
uninitialized memory) and results in unnecessary copying of data for static
storage.

Here we pass down the move assignment to the underlying storage.  Static
storage does a one-way copy, dynamic storage does a swap.

Modified the tests to no longer read from the moved-from matrix/tensor,
since that can lead to UB. Added a test to ensure we do not access
uninitialized memory in a move.

Fixes: #2119
2021-03-10 16:55:20 +00:00
Antonio Sanchez
2468253c9a Define EIGEN_CPLUSPLUS and replace most __cplusplus checks.
The macro `__cplusplus` is not defined correctly in MSVC unless building
with the the `/Zc:__cplusplus` flag. Instead, it defines `_MSVC_LANG` to the
specified c++ standard version number.

Here we introduce `EIGEN_CPLUSPLUS` which will contain the c++ version
number both for MSVC and otherwise.  This simplifies checks for supported
features.

Also replaced most instances of standard version checking via `__cplusplus`
with the existing `EIGEN_COMP_CXXVER` macro for better clarity.

Fixes: #2170
2021-03-05 18:33:18 +00:00
David Tellenbach
5f0b4a4010 Revert "Adds EIGEN_CONSTEXPR and EIGEN_NOEXCEPT to rows(), cols(), innerStride(), outerStride(), and size()"
This reverts commit 6cbb3038ac because it
breaks clang-10 builds on x86 and aarch64 when C++11 is enabled.
2021-03-05 13:16:43 +01:00
Steve Bronder
6cbb3038ac Adds EIGEN_CONSTEXPR and EIGEN_NOEXCEPT to rows(), cols(), innerStride(), outerStride(), and size() 2021-03-04 18:58:08 +00:00
Eugene Zhulenev
a6601070f2 Add log2 operation to TensorBase 2021-03-04 00:13:36 +00:00
Christoph Hertzberg
2660d01fa7 Inherit from no_assignment_operator to avoid implicit copy constructor warnings
(cherry picked from commit 9bbb7ea4b54b1f307863be4ed8d105c38cdefe50)
2021-02-27 18:44:26 +01:00
Christoph Hertzberg
a3521d743c Fix some enum-enum conversion warnings
(cherry picked from commit 838f3d8ce22a5549ef10c7386fb03040721749a0)
2021-02-27 18:44:26 +01:00
Christoph Hertzberg
81b5fe2f0a ReturnByValue is already non-copyable
(cherry picked from commit abbf95045009619f37bd92b45433eedbfcbe41cf)
2021-02-27 18:44:26 +01:00
Christoph Hertzberg
4fb3459a23 Fix double-promotion warnings
(cherry picked from commit c22c103e932e511e96645186831363585a44b7a3)
2021-02-27 18:44:26 +01:00
Jens Wehner
4bfcee47b9 Idrs iterative linear solver 2021-02-27 12:09:33 +00:00
Rasmus Munk Larsen
f284c8592b Don't crash when attempting to slice an empty tensor. 2021-02-24 18:12:51 -08:00
Guoqiang QI
f44197fabd Some improvements for kissfft from Martin Reinecke(pocketfft author):
1.Only computing about half of the factors and use complex conjugate symmetry for the rest instead of all to save time.
2.All twiddles are calculated in double because that gives the maximum achievable precision when doing float transforms.
3.Reducing all angles to the range 0<angle<pi/4 which gives even more precision.
2021-02-24 21:36:47 +00:00
Antonio Sanchez
119763cf38 Eliminate CMake FindPackageHandleStandardArgs warnings.
CMake complains that the package name does not match when the case
differs, e.g.:
```
CMake Warning (dev) at /usr/share/cmake-3.18/Modules/FindPackageHandleStandardArgs.cmake:273 (message):
  The package name passed to `find_package_handle_standard_args` (UMFPACK)
  does not match the name of the calling package (Umfpack).  This can lead to
  problems in calling code that expects `find_package` result variables
  (e.g., `_FOUND`) to follow a certain pattern.
Call Stack (most recent call first):
  cmake/FindUmfpack.cmake:50 (find_package_handle_standard_args)
  bench/spbench/CMakeLists.txt:24 (find_package)
This warning is for project developers.  Use -Wno-dev to suppress it.
```
Here we rename the libraries to match their true cases.
2021-02-24 09:52:05 +00:00
Antonio Sanchez
5f9cfb2529 Add missing adolc isinf/isnan.
Also modified cmake/FindAdolc.cmake to eliminate warnings, and added
search paths to match install layout.

Fixed: #2157
2021-02-19 22:26:56 +00:00
frgossen
33e0af0130 Return nan at poles of polygamma, digamma, and zeta if limit is not defined 2021-02-19 16:35:11 +00:00
David Tellenbach
36200b7855 Remove vim specific comments to recognoize correct file-type.
As discussed in #2143 we remove editor specific comments.
2021-02-09 09:13:09 +01:00
Ralf Hannemann-Tamas
984d010b7b add specialization of check_sparse_solving() for SuperLU solver, in order to test adjoint and transpose solves 2021-02-08 22:00:31 +00:00
Antonio Sanchez
3f4684f87d Include <cstdint> in one place, remove custom typedefs
Originating from
[this SO issue](https://stackoverflow.com/questions/65901014/how-to-solve-this-all-error-2-in-this-case),
some win32 compilers define `__int32` as a `long`, but MinGW defines
`std::int32_t` as an `int`, leading to a type conflict.

To avoid this, we remove the custom `typedef` definitions for win32.  The
Tensor module requires C++11 anyways, so we are guaranteed to have
included `<cstdint>` already in `Eigen/Core`.

Also re-arranged the headers to only include `<cstdint>` in one place to
avoid this type of error again.
2021-01-26 14:23:05 -08:00
Gmc2
a4edb1079c fix test of ExtractVolumePatchesOp 2021-01-25 03:23:46 +00:00
David Tellenbach
660c6b857c Remove std::cerr in iterative solver since we don't have iostream.
This fixes #2123
2021-01-21 11:40:05 +01:00
Maozhou, Ge
21a8a2487c fix paddings of TensorVolumePatchOp 2021-01-15 11:51:49 +08:00
Antonio Sanchez
070d303d56 Add CUDA complex sqrt.
This is to support scalar `sqrt` of complex numbers `std::complex<T>` on
device, requested by Tensorflow folks.

Technically `std::complex` is not supported by NVCC on device
(though it is by clang), so the default `sqrt(std::complex<T>)` function only
works on the host. Here we create an overload to add back the
functionality.

Also modified the CMake file to add `--relaxed-constexpr` (or
equivalent) flag for NVCC to allow calling constexpr functions from
device functions, and added support for specifying compute architecture for
NVCC (was already available for clang).
2020-12-22 23:25:23 -08:00
Turing Eret
19e6496ce0 Replace call to FixedDimensions() with a singleton instance of
FixedDimensions.
2020-12-16 07:34:44 -07:00
Turing Eret
bc7d1599fb TensorStorage with FixedDimensions now has zero instance memory overhead.
Removed m_dimension as instance member of TensorStorage with
FixedDimensions and instead use the template parameter. This
means that the sizeof a pure fixed-size storage is exactly
equal to the data it is storing.
2020-12-14 07:19:34 -07:00
Alexander Grund
cf0b5b0344 Remove code checking for CMake < 3.5
As the CMake version is at least 3.5 the code checking for earlier versions can be removed.
2020-12-14 09:57:44 +00:00
Antonio Sanchez
2dbac2f99f Fix bad NEON fp16 check 2020-12-04 13:42:18 -08:00
Antonio Sanchez
e2f21465fe Special function implementations for half/bfloat16 packets.
Current implementations fail to consider half-float packets, only
half-float scalars.  Added specializations for packets on AVX, AVX512 and
NEON.  Added tests to `special_packetmath`.

The current `special_functions` tests would fail for half and bfloat16 due to
lack of precision. The NEON tests also fail with precision issues and
due to different handling of `sqrt(inf)`, so special functions bessel, ndtri
have been disabled.

Tested with AVX, AVX512.
2020-12-04 10:16:29 -08:00
Rasmus Munk Larsen
71c85df4c1 Clean up the Tensor header and get rid of the EIGEN_SLEEP macro. 2020-12-02 11:04:04 -08:00
Bowie Owens
9842366bba Make inclusion of doc sub-directory optional by adjusting options.
Allows exclusion of doc and related targets to help when using eigen via add_subdirectory().

Requested by:

https://gitlab.com/libeigen/eigen/-/issues/1842

Also required making EIGEN_TEST_BUILD_DOCUMENTATION a dependent option on EIGEN_BUILD_DOC. This ensures documentation targets are properly defined when EIGEN_TEST_BUILD_DOCUMENTATION is ON.
2020-11-27 08:11:49 +11:00
Antonio Sanchez
22f67b5958 Fix boolean float conversion and product warnings.
This fixes some gcc warnings such as:
```
Eigen/src/Core/GenericPacketMath.h:655:63: warning: implicit conversion turns floating-point number into bool: 'typename __gnu_cxx::__enable_if<__is_integer<bool>::__value, double>::__type' (aka 'double') to 'bool' [-Wimplicit-conversion-floating-point-to-bool]
    Packet psqrt(const Packet& a) { EIGEN_USING_STD(sqrt); return sqrt(a); }
```

Details:

- Added `scalar_sqrt_op<bool>` (`-Wimplicit-conversion-floating-point-to-bool`).

- Added `scalar_square_op<bool>` and `scalar_cube_op<bool>`
specializations (`-Wint-in-bool-context`)

- Deprecated above specialized ops for bool.

- Modified `cxx11_tensor_block_eval` to specialize generator for
booleans (`-Wint-in-bool-context`) and to use `abs` instead of `square` to
avoid deprecated bool ops.
2020-11-24 20:20:36 +00:00
Antonio Sanchez
a8fdcae55d Fix sparse_extra_3, disable counting temporaries for testing DynamicSparseMatrix.
Multiplication of column-major `DynamicSparseMatrix`es involves three
temporaries:
- two for transposing twice to sort the coefficients
(`ConservativeSparseSparseProduct.h`, L160-161)
- one for a final copy assignment (`SparseAssign.h`, L108)
The latter is avoided in an optimization for `SparseMatrix`.

Since `DynamicSparseMatrix` is deprecated in favor of `SparseMatrix`, it's not
worth the effort to optimize further, so I simply disabled counting
temporaries via a macro.

Note that due to the inclusion of `sparse_product.cpp`, the `sparse_extra`
tests actually re-run all the original `sparse_product` tests as well.

We may want to simply drop the `DynamicSparseMatrix` tests altogether, which
would eliminate the test duplication.

Related to #2048
2020-11-18 23:15:33 +00:00
Antonio Sanchez
17268b155d Add bit_cast for half/bfloat to/from uint16_t, fix TensorRandom
The existing `TensorRandom.h` implementation makes the assumption that
`half` (`bfloat16`) has a `uint16_t` member `x` (`value`), which is not
always true. This currently fails on arm64, where `x` has type `__fp16`.
Added `bit_cast` specializations to allow casting to/from `uint16_t`
for both `half` and `bfloat16`.  Also added tests in
`half_float`, `bfloat16_float`, and `cxx11_tensor_random` to catch
these errors in the future.
2020-11-18 20:32:35 +00:00
Antonio Sanchez
3669498f5a Fix rule-of-3 for the Tensor module.
Adds copy constructors to Tensor ops, inherits assignment operators from
`TensorBase`.

Addresses #1863
2020-11-18 18:14:53 +00:00
Antonio Sanchez
852513e7a6 Disable testing of OpenGL by default.
The `OpenGLSupport` module contains mostly deprecated features, and the
test is highly GL context-dependent, relies on deprecated GLUT, and
requires a display.  Until the module is updated to support modern
OpenGL and the test to use newer windowing frameworks (e.g. GLFW)
it's probably best to disable the test by default.

The test can be enabled with `cmake -DEIGEN_TEST_OPENGL=ON`.

See #2053 for more details.
2020-11-12 16:15:40 -08:00
Antonio Sanchez
6961468915 Address issues with openglsupport test.
The existing test fails on several systems due to GL runtime version mismatches,
the use of deprecated features, and memory errors due to improper use of GLUT.
The test was modified to:

- Run within a display function, allowing proper GLUT cleanup.
- Generate dynamic shaders with a supported GLSL version string and output variables.
- Report shader compilation errors.
- Check GL context version before launching version-specific tests.

Note that most of the existing `OpenGLSupport` module and tests rely on deprecated
features (e.g. fixed-function pipeline). The test was modified to allow it to
pass on various systems. We might want to consider removing the module or re-writing
it entirely to support modern OpenGL.  This is beyond the scope of this patch.

Testing of legacy GL (for platforms that support it) can be enabled by defining
`EIGEN_LEGACY_OPENGL`.  Otherwise, the test will try to create a modern context.

Tested on
- MacBook Air (2019), macOS Catalina 10.15.7 (OpenGL 2.1, 4.1)
- Debian 10.6, NVidia Quadro K1200 (OpenGL 3.1, 3.3)
2020-11-11 15:54:43 -08:00
Deven Desai
9d11e2c03e CMakefile update for ROCm 4.0
Starting with ROCm 4.0, the `hipconfig --platform` command will return `amd` (prior return value was `hcc`). Updating the CMakeLists.txt files in the test dirs to account for this change.
2020-10-29 18:06:31 +00:00
mehdi-goli
a725a3233c [SYCL clean up the code] : removing exrta #pragma unroll in SYCL which was causing issues in embeded systems 2020-10-28 08:34:49 +00:00
Rasmus Munk Larsen
274ef12b61 Remove leftover debug print statement in cxx11_tensor_expr.cpp 2020-10-14 22:59:51 +00:00
Rasmus Munk Larsen
61fc78bbda Get rid of nested template specialization in TensorReductionGpu.h, which was broken by c6953f799b. 2020-10-13 23:53:11 +00:00
Rasmus Munk Larsen
c6953f799b Add packet generic ops predux_fmin, predux_fmin_nan, predux_fmax, and predux_fmax_nan that implement reductions with PropagateNaN, and PropagateNumbers semantics. Add (slow) generic implementations for most reductions. 2020-10-13 21:48:31 +00:00
David Tellenbach
8f8d77b516 Add EIGEN prefix for HAS_LGAMMA_R 2020-10-08 18:32:19 +02:00
Eugene Zhulenev
2279f2c62f Use lgamma_r if it is available (update check for glibc 2.19+) 2020-10-08 00:26:45 +00:00
Rasmus Munk Larsen
b431024404 Don't make assumptions about NaN-propagation for pmin/pmax - it various across platforms.
Change test to only test for NaN-propagation for pfmin/pfmax.
2020-10-07 19:05:18 +00:00
Zhuyie
e4b24e7fb2 Fix Eigen::ThreadPool::CurrentThreadId returning wrong thread id when EIGEN_AVOID_THREAD_LOCAL and NDEBUG are defined 2020-09-25 09:36:43 +00:00
Rasmus Munk Larsen
e55182ac09 Get rid of initialization logic for blueNorm by making the computed constants static const or constexpr.
Move macro definition EIGEN_CONSTEXPR to Core and make all methods in NumTraits constexpr when EIGEN_HASH_CONSTEXPR is 1.
2020-09-18 17:38:58 +00:00
Deven Desai
603e213d13 Fixing a CUDA / P100 regression introduced by PR 181
PR 181 ( https://gitlab.com/libeigen/eigen/-/merge_requests/181 ) adds `__launch_bounds__(1024)` attribute to GPU kernels, that did not have that attribute explicitly specified.

That PR seems to cause regressions on the CUDA platform. This PR/commit makes the changes in PR 181, to be applicable for HIP only
2020-08-20 00:29:57 +00:00
David Tellenbach
d4a727d092 Disable min/max NaN propagation in test cxx11_tensor_expr
The current pmin/pmax implementation for Arm Neon propagate NaNs
differently than std::min/std::max.

See issue https://gitlab.com/libeigen/eigen/-/issues/1937
2020-08-14 16:16:27 +00:00
Deven Desai
46f8a18567 Adding an explicit launch_bounds(1024) attribute for GPU kernels.
Starting with ROCm 3.5, the HIP compiler will change from HCC to hip-clang.

This compiler change introduce a change in the default value of the `__launch_bounds__` attribute associated with a GPU kernel. (default value means the value assumed by the compiler as the `__launch_bounds attribute__` value, when it is not explicitly specified by the user)

Currently (i.e. for HIP with ROCm 3.3 and older), the default value is 1024. That changes to 256 with ROCm 3.5 (i.e. hip-clang compiler). As a consequence of this change, if a GPU kernel with a `__luanch_bounds__` attribute of 256 is launched at runtime with a threads_per_block value > 256, it leads to a runtime error. This is leading to a couple of Eigen unit test failures with ROCm 3.5.

This commit adds an explicit `__launch_bounds(1024)__` attribute to every GPU kernel that currently does not have it explicitly specified (and hence will end up getting the default value of 256 with the change to hip-clang)
2020-08-05 01:46:34 +00:00
Rasmus Munk Larsen
b92206676c Inherit alignment trait from argument in TensorBroadcasting to avoid segfault when the argument is unaligned. 2020-07-28 19:19:37 +00:00
Rasmus Munk Larsen
ac2eca6b11 Update tensor reduction test to avoid undefined division of bfloat16 by int. 2020-07-22 00:35:51 +00:00
Antonio Sanchez
9cb8771e9c Fix tensor casts for large packets and casts to/from std::complex
The original tensor casts were only defined for
`SrcCoeffRatio`:`TgtCoeffRatio` 1:1, 1:2, 2:1, 4:1. Here we add the
missing 1:N and 8:1.

We also add casting `Eigen::half` to/from `std::complex<T>`, which
was missing to make it consistent with `Eigen:bfloat16`, and
generalize the overload to work for any complex type.

Tests were added to `basicstuff`, `packetmath`, and
`cxx11_tensor_casts` to test all cast configurations.
2020-06-30 18:53:55 +00:00
Teng Lu
386d809bde Support BFloat16 in Eigen 2020-06-20 19:16:24 +00:00
Ilya Tokar
231ce21535 Run two independent chains, when reducing tensors.
Running two chains exposes more instruction level parallelism,
by allowing to execute both chains at the same time.

Results are a bit noisy, but for medium length we almost hit
theoretical upper bound of 2x.

BM_fullReduction_16T/3        [using 16 threads]       17.3ns ±11%        17.4ns ± 9%        ~           (p=0.178 n=18+19)
BM_fullReduction_16T/4        [using 16 threads]       17.6ns ±17%        17.0ns ±18%        ~           (p=0.835 n=20+19)
BM_fullReduction_16T/7        [using 16 threads]       18.9ns ±12%        18.2ns ±10%        ~           (p=0.756 n=20+18)
BM_fullReduction_16T/8        [using 16 threads]       19.8ns ±13%        19.4ns ±21%        ~           (p=0.512 n=20+20)
BM_fullReduction_16T/10       [using 16 threads]       23.5ns ±15%        20.8ns ±24%     -11.37%        (p=0.000 n=20+19)
BM_fullReduction_16T/15       [using 16 threads]       35.8ns ±21%        26.9ns ±17%     -24.76%        (p=0.000 n=20+19)
BM_fullReduction_16T/16       [using 16 threads]       38.7ns ±22%        27.7ns ±18%     -28.40%        (p=0.000 n=20+19)
BM_fullReduction_16T/31       [using 16 threads]        146ns ±17%          74ns ±11%     -49.05%        (p=0.000 n=20+18)
BM_fullReduction_16T/32       [using 16 threads]        154ns ±19%          84ns ±30%     -45.79%        (p=0.000 n=20+19)
BM_fullReduction_16T/64       [using 16 threads]        603ns ± 8%         308ns ±12%     -48.94%        (p=0.000 n=17+17)
BM_fullReduction_16T/128      [using 16 threads]       2.44µs ±13%        1.22µs ± 1%     -50.29%        (p=0.000 n=17+17)
BM_fullReduction_16T/256      [using 16 threads]       9.84µs ±14%        5.13µs ±30%     -47.82%        (p=0.000 n=19+19)
BM_fullReduction_16T/512      [using 16 threads]       78.0µs ± 9%        56.1µs ±17%     -28.02%        (p=0.000 n=18+20)
BM_fullReduction_16T/1k       [using 16 threads]        325µs ± 5%         263µs ± 4%     -19.00%        (p=0.000 n=20+16)
BM_fullReduction_16T/2k       [using 16 threads]       1.09ms ± 3%        0.99ms ± 1%      -9.04%        (p=0.000 n=20+20)
BM_fullReduction_16T/4k       [using 16 threads]       7.66ms ± 3%        7.57ms ± 3%      -1.24%        (p=0.017 n=20+20)
BM_fullReduction_16T/10k      [using 16 threads]       65.3ms ± 4%        65.0ms ± 3%        ~           (p=0.718 n=20+20)
2020-06-16 15:55:11 -04:00
Antonio Sanchez
a7d2552af8 Remove HasCast and fix packetmath cast tests.
The use of the `packet_traits<>::HasCast` field is currently inconsistent with
`type_casting_traits<>`, and is unused apart from within
`test/packetmath.cpp`. In addition, those packetmath cast tests do not
currently reflect how casts are performed in practice: they ignore the
`SrcCoeffRatio` and `TgtCoeffRatio` fields, assuming a 1:1 ratio.

Here we remove the unsed `HasCast`, and modify the packet cast tests to
better reflect their usage.
2020-06-11 17:26:56 +00:00
Thales Sabino
1fcaaf460f Update FindComputeCpp.cmake to fix build problems on Windows
- Use standard types in SYCL/PacketMath.h to avoid compilation problems on Windows
- Add EIGEN_HAS_CONSTEXPR to cxx11_tensor_argmax_sycl.cpp to fix build problems on Windows
2020-06-05 20:51:20 +00:00
Antonio Sánchez
8719b9c5bc Disable test for 32-bit systems (e.g. ARM, i386)
Both i386 and 32-bit ARM do not define __uint128_t. On most systems, if
__uint128_t is defined, then so is the macro __SIZEOF_INT128__.

https://stackoverflow.com/questions/18531782/how-to-know-if-uint128-t-is-defined1
2020-05-28 17:40:15 +00:00
mehdi-goli
d3e81db6c5 Eigen moved the scanLauncehr function inside the internal namespace.
This commit applies the following changes:
    - Moving the `scamLauncher` specialization inside internal namespace to fix compiler crash on TensorScan for SYCL backend.
    - Replacing  `SYCL/sycl.hpp` to `CL/sycl.hpp` in order to follow SYCL 1.2.1 standard.
    - minor fixes: commenting out an unused variable to avoid compiler warnings.
2020-05-11 16:10:33 +01:00
Rasmus Munk Larsen
2fd8a5a08f Add parallelization of TensorScanOp for types without packet ops.
Clean up the code a bit and do a few micro-optimizations to improve performance for small tensors.

Benchmark numbers for Tensor<uint32_t>:

name                                                       old time/op             new time/op             delta
BM_cumSumRowReduction_1T/8   [using 1 threads]             76.5ns ± 0%             61.3ns ± 4%    -19.80%          (p=0.008 n=5+5)
BM_cumSumRowReduction_1T/64  [using 1 threads]             2.47µs ± 1%             2.40µs ± 1%     -2.77%          (p=0.008 n=5+5)
BM_cumSumRowReduction_1T/256 [using 1 threads]             39.8µs ± 0%             39.6µs ± 0%     -0.60%          (p=0.008 n=5+5)
BM_cumSumRowReduction_1T/4k  [using 1 threads]             13.9ms ± 0%             13.4ms ± 1%     -4.19%          (p=0.008 n=5+5)
BM_cumSumRowReduction_2T/8   [using 2 threads]             76.8ns ± 0%             59.1ns ± 0%    -23.09%          (p=0.016 n=5+4)
BM_cumSumRowReduction_2T/64  [using 2 threads]             2.47µs ± 1%             2.41µs ± 1%     -2.53%          (p=0.008 n=5+5)
BM_cumSumRowReduction_2T/256 [using 2 threads]             39.8µs ± 0%             34.7µs ± 6%    -12.74%          (p=0.008 n=5+5)
BM_cumSumRowReduction_2T/4k  [using 2 threads]             13.8ms ± 1%              7.2ms ± 6%    -47.74%          (p=0.008 n=5+5)
BM_cumSumRowReduction_8T/8   [using 8 threads]             76.4ns ± 0%             61.8ns ± 3%    -19.02%          (p=0.008 n=5+5)
BM_cumSumRowReduction_8T/64  [using 8 threads]             2.47µs ± 1%             2.40µs ± 1%     -2.84%          (p=0.008 n=5+5)
BM_cumSumRowReduction_8T/256 [using 8 threads]             39.8µs ± 0%             28.3µs ±11%    -28.75%          (p=0.008 n=5+5)
BM_cumSumRowReduction_8T/4k  [using 8 threads]             13.8ms ± 0%              2.7ms ± 5%    -80.39%          (p=0.008 n=5+5)
BM_cumSumColReduction_1T/8   [using 1 threads]             59.1ns ± 0%             80.3ns ± 0%    +35.94%          (p=0.029 n=4+4)
BM_cumSumColReduction_1T/64  [using 1 threads]             3.06µs ± 0%             3.08µs ± 1%       ~             (p=0.114 n=4+4)
BM_cumSumColReduction_1T/256 [using 1 threads]              175µs ± 0%              176µs ± 0%       ~             (p=0.190 n=4+5)
BM_cumSumColReduction_1T/4k  [using 1 threads]              824ms ± 1%              844ms ± 1%     +2.37%          (p=0.008 n=5+5)
BM_cumSumColReduction_2T/8   [using 2 threads]             59.0ns ± 0%             90.7ns ± 0%    +53.74%          (p=0.029 n=4+4)
BM_cumSumColReduction_2T/64  [using 2 threads]             3.06µs ± 0%             3.10µs ± 0%     +1.08%          (p=0.016 n=4+5)
BM_cumSumColReduction_2T/256 [using 2 threads]              176µs ± 0%              189µs ±18%       ~             (p=0.151 n=5+5)
BM_cumSumColReduction_2T/4k  [using 2 threads]              836ms ± 2%              611ms ±14%    -26.92%          (p=0.008 n=5+5)
BM_cumSumColReduction_8T/8   [using 8 threads]             59.3ns ± 2%             90.6ns ± 0%    +52.79%          (p=0.008 n=5+5)
BM_cumSumColReduction_8T/64  [using 8 threads]             3.07µs ± 0%             3.10µs ± 0%     +0.99%          (p=0.016 n=5+4)
BM_cumSumColReduction_8T/256 [using 8 threads]              176µs ± 0%               80µs ±19%    -54.51%          (p=0.008 n=5+5)
BM_cumSumColReduction_8T/4k  [using 8 threads]              827ms ± 2%              180ms ±14%    -78.24%          (p=0.008 n=5+5)
2020-05-06 14:48:37 -07:00
Rasmus Munk Larsen
0e59f786e1 Fix accidental copy of loop variable. 2020-05-05 21:35:38 +00:00
Rasmus Munk Larsen
7b76c85daf Vectorize and parallelize TensorScanOp.
TensorScanOp is used in TensorFlow for a number of operations, such as cumulative logexp reduction and cumulative sum and product reductions.

The benchmarks numbers below are for cumulative row- and column reductions of NxN matrices.

name                                                         old time/op             new time/op     delta
BM_cumSumRowReduction_1T/4    [using 1 threads ]             25.1ns ± 1%             35.2ns ± 1%    +40.45%
BM_cumSumRowReduction_1T/8    [using 1 threads ]             73.4ns ± 0%             82.7ns ± 3%    +12.74%
BM_cumSumRowReduction_1T/32   [using 1 threads ]              988ns ± 0%              832ns ± 0%    -15.77%
BM_cumSumRowReduction_1T/64   [using 1 threads ]             4.07µs ± 2%             3.47µs ± 0%    -14.70%
BM_cumSumRowReduction_1T/128  [using 1 threads ]             18.0µs ± 0%             16.8µs ± 0%     -6.58%
BM_cumSumRowReduction_1T/512  [using 1 threads ]              287µs ± 0%              281µs ± 0%     -2.22%
BM_cumSumRowReduction_1T/2k   [using 1 threads ]             4.78ms ± 1%             4.78ms ± 2%       ~
BM_cumSumRowReduction_1T/10k  [using 1 threads ]              117ms ± 1%              117ms ± 1%       ~
BM_cumSumRowReduction_8T/4    [using 8 threads ]             25.0ns ± 0%             35.2ns ± 0%    +40.82%
BM_cumSumRowReduction_8T/8    [using 8 threads ]             77.2ns ±16%             81.3ns ± 0%       ~
BM_cumSumRowReduction_8T/32   [using 8 threads ]              988ns ± 0%              833ns ± 0%    -15.67%
BM_cumSumRowReduction_8T/64   [using 8 threads ]             4.08µs ± 2%             3.47µs ± 0%    -14.95%
BM_cumSumRowReduction_8T/128  [using 8 threads ]             18.0µs ± 0%             17.3µs ±10%       ~
BM_cumSumRowReduction_8T/512  [using 8 threads ]              287µs ± 0%               58µs ± 6%    -79.92%
BM_cumSumRowReduction_8T/2k   [using 8 threads ]             4.79ms ± 1%             0.64ms ± 1%    -86.58%
BM_cumSumRowReduction_8T/10k  [using 8 threads ]              117ms ± 1%               18ms ± 6%    -84.50%

BM_cumSumColReduction_1T/4    [using 1 threads ]             23.9ns ± 0%             33.4ns ± 1%    +39.68%
BM_cumSumColReduction_1T/8    [using 1 threads ]             71.6ns ± 1%             49.1ns ± 3%    -31.40%
BM_cumSumColReduction_1T/32   [using 1 threads ]              973ns ± 0%              165ns ± 2%    -83.10%
BM_cumSumColReduction_1T/64   [using 1 threads ]             4.06µs ± 1%             0.57µs ± 1%    -85.94%
BM_cumSumColReduction_1T/128  [using 1 threads ]             33.4µs ± 1%              4.1µs ± 1%    -87.67%
BM_cumSumColReduction_1T/512  [using 1 threads ]             1.72ms ± 4%             0.21ms ± 5%    -87.91%
BM_cumSumColReduction_1T/2k   [using 1 threads ]              119ms ±53%               11ms ±35%    -90.42%
BM_cumSumColReduction_1T/10k  [using 1 threads ]              1.59s ±67%              0.35s ±49%    -77.96%
BM_cumSumColReduction_8T/4    [using 8 threads ]             23.8ns ± 0%             33.3ns ± 0%    +40.06%
BM_cumSumColReduction_8T/8    [using 8 threads ]             71.6ns ± 1%             49.2ns ± 5%    -31.33%
BM_cumSumColReduction_8T/32   [using 8 threads ]             1.01µs ±12%             0.17µs ± 3%    -82.93%
BM_cumSumColReduction_8T/64   [using 8 threads ]             4.15µs ± 4%             0.58µs ± 1%    -86.09%
BM_cumSumColReduction_8T/128  [using 8 threads ]             33.5µs ± 0%              4.1µs ± 4%    -87.65%
BM_cumSumColReduction_8T/512  [using 8 threads ]             1.71ms ± 3%             0.06ms ±16%    -96.21%
BM_cumSumColReduction_8T/2k   [using 8 threads ]             97.1ms ±14%              3.0ms ±23%    -96.88%
BM_cumSumColReduction_8T/10k  [using 8 threads ]              1.97s ± 8%              0.06s ± 2%    -96.74%
2020-05-05 00:19:43 +00:00
Rasmus Munk Larsen
ab773c7e91 Extend support for Packet16b:
* Add ptranspose<*,4> to support matmul and add unit test for Matrix<bool> * Matrix<bool>
* work around a bug in slicing of Tensor<bool>.
* Add tensor tests

This speeds up matmul for boolean matrices by about 10x

name                            old time/op             new time/op             delta
BM_MatMul<bool>/8                267ns ± 0%              479ns ± 0%  +79.25%          (p=0.008 n=5+5)
BM_MatMul<bool>/32              6.42µs ± 0%             0.87µs ± 0%  -86.50%          (p=0.008 n=5+5)
BM_MatMul<bool>/64              43.3µs ± 0%              5.9µs ± 0%  -86.42%          (p=0.008 n=5+5)
BM_MatMul<bool>/128              315µs ± 0%               44µs ± 0%  -85.98%          (p=0.008 n=5+5)
BM_MatMul<bool>/256             2.41ms ± 0%             0.34ms ± 0%  -85.68%          (p=0.008 n=5+5)
BM_MatMul<bool>/512             18.8ms ± 0%              2.7ms ± 0%  -85.53%          (p=0.008 n=5+5)
BM_MatMul<bool>/1k               149ms ± 0%               22ms ± 0%  -85.40%          (p=0.008 n=5+5)
2020-04-28 16:12:47 +00:00
Eugene Zhulenev
3c02fefec5 Add async evaluation support to TensorSlicingOp.
Device::memcpy is not async-safe and might lead to deadlocks. Always evaluate slice expression in async mode.
2020-04-22 19:55:01 +00:00
Rasmus Munk Larsen
2f6ddaa25c Add partial vectorization for matrices and tensors of bool. This speeds up boolean operations on Tensors by up to 25x.
Benchmark numbers for the logical and of two NxN tensors:

name                                               old time/op             new time/op             delta
BM_booleanAnd_1T/3   [using 1 threads]             14.6ns ± 0%             14.4ns ± 0%   -0.96%
BM_booleanAnd_1T/4   [using 1 threads]             20.5ns ±12%              9.0ns ± 0%  -56.07%
BM_booleanAnd_1T/7   [using 1 threads]             41.7ns ± 0%             10.5ns ± 0%  -74.87%
BM_booleanAnd_1T/8   [using 1 threads]             52.1ns ± 0%             10.1ns ± 0%  -80.59%
BM_booleanAnd_1T/10  [using 1 threads]             76.3ns ± 0%             13.8ns ± 0%  -81.87%
BM_booleanAnd_1T/15  [using 1 threads]              167ns ± 0%               16ns ± 0%  -90.45%
BM_booleanAnd_1T/16  [using 1 threads]              188ns ± 0%               16ns ± 0%  -91.57%
BM_booleanAnd_1T/31  [using 1 threads]              667ns ± 0%               34ns ± 0%  -94.83%
BM_booleanAnd_1T/32  [using 1 threads]              710ns ± 0%               35ns ± 0%  -95.01%
BM_booleanAnd_1T/64  [using 1 threads]             2.80µs ± 0%             0.11µs ± 0%  -95.93%
BM_booleanAnd_1T/128 [using 1 threads]             11.2µs ± 0%              0.4µs ± 0%  -96.11%
BM_booleanAnd_1T/256 [using 1 threads]             44.6µs ± 0%              2.5µs ± 0%  -94.31%
BM_booleanAnd_1T/512 [using 1 threads]              178µs ± 0%               10µs ± 0%  -94.35%
BM_booleanAnd_1T/1k  [using 1 threads]              717µs ± 0%               78µs ± 1%  -89.07%
BM_booleanAnd_1T/2k  [using 1 threads]             2.87ms ± 0%             0.31ms ± 1%  -89.08%
BM_booleanAnd_1T/4k  [using 1 threads]             11.7ms ± 0%              1.9ms ± 4%  -83.55%
BM_booleanAnd_1T/10k [using 1 threads]             70.3ms ± 0%             17.2ms ± 4%  -75.48%
2020-04-20 20:16:28 +00:00
Changming Sun
b1aa07a8d3 Fix a bug in TensorIndexList.h 2020-04-13 18:22:03 +00:00
jangsoopark
39142904cc Resolve C4346 when building eigen on windows 2020-04-08 14:55:39 +09:00
Aaron Franke
5c22c7a7de Make file formatting comply with POSIX and Unix standards
UTF-8, LF, no BOM, and newlines at the end of files
2020-03-23 18:09:02 +00:00
Deven Desai
7158ed4e0e Fixing HIP breakage caused by the recent commit that introduces Packet4h2 as the Eigen::Half packet type 2020-03-12 01:06:24 +00:00
Sami Kama
b733b8b680 remove duplicate pset1 for half and add some comments about why we need expose pmul/add/div/min/max on host 2020-03-10 20:28:43 +00:00
Cédric Hubert
98bfc5aaa8 Update MarketIO.h 2020-02-28 12:41:51 +00:00
Ilya Tokar
eb6cc29583 Avoid a division in NonBlockingThreadPool::Steal.
Looking at profiles we spend ~10-20% of Steal on simply computing
random % size. We can reduce random 32-bit int into [0, size) range with
a single multiplication and shift. This transformation is described in
https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
2020-02-14 16:02:57 -05:00
Eugene Zhulenev
f584bd9b30 Fail at compile time if default executor tries to use non-default device 2020-02-06 22:43:24 +00:00
Eugene Zhulenev
3fda850c46 Remove dead code from TensorReduction.h 2020-01-29 18:45:31 +00:00
Jeff Daily
b5df8cabd7 fix hip-clang compilation due to new HIP scalar accessor 2020-01-20 21:08:52 +00:00
Deven Desai
6d284bb1b7 Fix for HIP breakage - 200115. Adding a missing EIGEN_DEVICE_FUNC attr 2020-01-16 00:51:43 +00:00
Srinivas Vasudevan
f6c6de5d63 Ensure Igamma does not NaN or Inf for large values. 2020-01-14 21:32:48 +00:00
Eugene Zhulenev
b9362fb8f7 Convert StridedLinearBufferCopy::Kind to enum class 2020-01-13 11:43:24 -08:00
Srinivas Vasudevan
2e099e8d8f Added special_packetmath test and tweaked bounds on tests.
Refactor shared packetmath code to header file.
(Squashed from PR !38)
2020-01-11 10:31:21 +00:00
Matthew Powelson
2ea5a715cf Properly initialize b vector in SplineFitting
InterpolateWithDerivative does not initialize the be vector correctly. This issue is discussed In stackoverflow question 48382939.
2020-01-09 21:29:04 +00:00
Ilya Tokar
19876ced76 Bug #1785: Introduce numext::rint.
This provides a new op that matches std::rint and previous behavior of
pround. Also adds corresponding unsupported/../Tensor op.
Performance is the same as e. g. floor (tested SSE/AVX).
2020-01-07 21:22:44 +00:00
mehdi-goli
d0ae052da4 [SYCL Backend]
* Adding Missing operations for vector comparison in SYCL. This caused compiler error for vector comparison when compiling SYCL
 * Fixing the compiler error for placement new in TensorForcedEval.h This caused compiler error when compiling SYCL backend
 * Reducing the SYCL warning by  removing the abort function inside the kernel
 * Adding Strong inline to functions inside SYCL interop.
2020-01-07 15:13:37 +00:00
Deven Desai
636e2bb3fa Fix for HIP breakage - 191220
The breakage was introduced by the following commit :

ae07801dd8

After the commit, HIPCC errors out on some tests with the following error

```
Building HIPCC object unsupported/test/CMakeFiles/cxx11_tensor_device_1.dir/cxx11_tensor_device_1_generated_cxx11_tensor_device.cu.o
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_device.cu:17:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor💯
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h:129:12: error: no matching constructor for initialization of 'Eigen::internal::TensorBlockResourceRequirements'
    return {merge(lhs.shape_type, rhs.shape_type),           // shape_type
           ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h:75:8: note: candidate constructor (the implicit copy constructor) not viable: requires 1 argument, but 3 were provided
struct TensorBlockResourceRequirements {
       ^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h:75:8: note: candidate constructor (the implicit move constructor) not viable: requires 1 argument, but 3 were provided
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h:75:8: note: candidate constructor (the implicit copy constructor) not viable: requires 5 arguments, but 3 were provided
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h:75:8: note: candidate constructor (the implicit default constructor) not viable: requires 0 arguments, but 3 were provided
...
...
```

The fix is to explicitly decalre the (implicitly called) constructor as a device func
2019-12-20 21:28:00 +00:00
Christoph Hertzberg
1e9664b147 Bug #1796: Make matrix squareroot usable for Map and Ref types 2019-12-20 18:10:22 +01:00
Christoph Hertzberg
d86544d654 Reduce code duplication and avoid confusing Doxygen 2019-12-19 19:48:39 +01:00
Christoph Hertzberg
dde279f57d Hide recursive meta templates from Doxygen 2019-12-19 19:47:23 +01:00
Christoph Hertzberg
c21771ac04 Use double-braces initialization (as everywhere else in the test-suite). 2019-12-19 19:20:48 +01:00
Christoph Hertzberg
a3273aeff8 Fix trivial shadow warning 2019-12-19 19:13:11 +01:00
Eugene Zhulenev
7a65219a2e Fix TensorPadding bug in squeezed reads from inner dimension 2019-12-19 05:43:57 +00:00
Eugene Zhulenev
73e55525e5 Return const data pointer from TensorRef evaluator.data() 2019-12-18 23:19:36 +00:00
Eugene Zhulenev
ae07801dd8 Tensor block evaluation cost model 2019-12-18 20:07:00 +00:00
Jeff Daily
de07c4d1c2 fix compilation due to new HIP scalar accessor 2019-12-17 20:27:30 +00:00
Eugene Zhulenev
788bef6ab5 Reduce block evaluation overhead for small tensor expressions 2019-12-17 19:06:14 +00:00
Eugene Zhulenev
381f8f3139 Initialize non-trivially constructible types when allocating a temp buffer. 2019-12-12 01:31:30 +00:00
Eugene Zhulenev
64272c7f40 Squeeze reads from two inner dimensions in TensorPadding 2019-12-11 16:54:51 -08:00
Eugene Zhulenev
963ba1015b Add back accidentally deleted default constructor to TensorExecutorTilingContext. 2019-12-11 18:47:55 +00:00
Eugene Zhulenev
c9220c035f Remove block memory allocation required by removed block evaluation API 2019-12-10 17:15:55 -08:00
Eugene Zhulenev
1c879eb010 Remove V2 suffix from TensorBlock 2019-12-10 15:40:23 -08:00
Eugene Zhulenev
dbca11e880 Remove TensorBlock.h and old TensorBlock/BlockMapper 2019-12-10 14:31:44 -08:00
Deven Desai
c49f0d851a Fix for HIP breakage detected on 191210
The following commit introduces compile errors when running eigen with hipcc

2918f85ba9

hipcc errors out because it requies the device attribute on the methods within the TensorBlockV2ResourceRequirements struct instroduced by the commit above. The fix is to add the device attribute to those methods
2019-12-10 22:14:05 +00:00
Eugene Zhulenev
2918f85ba9 Do not use std::vector in getResourceRequirements 2019-12-09 16:19:55 -08:00
Artem Belevich
8056a05b54 Undo the block size change.
.z *is* used by the EigenContractionKernelInternal().
2019-12-09 11:10:29 -08:00
Eugene Zhulenev
dbb703d44e Add async evaluation support to TensorSelectOp 2019-12-09 18:36:13 +00:00
Janek Kozicki
11d6465326 fix AlignedVector3 inconsisent interface with other Vector classes, default constructor and operator- were missing. 2019-12-06 21:07:39 +01:00
Eugene Zhulenev
bb7ccac3af Add recursive work splitting to EvalShardedByInnerDimContext 2019-12-05 14:51:49 -08:00
Artem Belevich
25230d1862 Improve performance of contraction kernels
* Force-inline implementations. They pass around pointers to shared memory
  blocks. Without inlining compiler must operate via generic pointers.
  Inlining allows compiler to detect that we're operating on shared memory
  which allows generation of substantially faster code.

* Fixed a long-standing typo which resulted in launching 8x more kernels
  than we needed (.z dimension of the block is unused by the kernel).
2019-12-05 12:48:34 -08:00
Rasmus Munk Larsen
366cf005b0 Add missing initialization in cxx11_tensor_trace.cpp. 2019-12-04 23:56:37 +00:00
Eugene Zhulenev
8f4536e852 Capture TensorMap by value inside tensor expression AST 2019-12-03 16:39:05 -08:00
Rasmus Munk Larsen
4e696901f8 Remove __host__ annotation for device-only function. 2019-12-03 14:33:19 -08:00
Rasmus Munk Larsen
ead81559c8 Use EIGEN_DEVICE_FUNC macro instead of __device__. 2019-12-03 12:08:22 -08:00
Mehdi Goli
00f32752f7 [SYCL] Rebasing the SYCL support branch on top of the Einge upstream master branch.
* Unifying all loadLocalTile from lhs and rhs to an extract_block function.
* Adding get_tensor operation which was missing in TensorContractionMapper.
* Adding the -D method missing from cmake for Disable_Skinny Contraction operation.
* Wrapping all the indices in TensorScanSycl into Scan parameter struct.
* Fixing typo in Device SYCL
* Unifying load to private register for tall/skinny no shared
* Unifying load to vector tile for tensor-vector/vector-tensor operation
* Removing all the LHS/RHS class for extracting data from global
* Removing Outputfunction from TensorContractionSkinnyNoshared.
* Combining the local memory version of tall/skinny and normal tensor contraction into one kernel.
* Combining the no-local memory version of tall/skinny and normal tensor contraction into one kernel.
* Combining General Tensor-Vector and VectorTensor contraction into one kernel.
* Making double buffering optional for Tensor contraction when local memory is version is used.
* Modifying benchmark to accept custom Reduction Sizes
* Disabling AVX optimization for SYCL backend on the host to allow SSE optimization to the host
* Adding Test for SYCL
* Modifying SYCL CMake
2019-11-28 10:08:54 +00:00
Eugene Zhulenev
5496d0da0b Add async evaluation support to TensorReverse 2019-11-26 15:02:24 -08:00
Eugene Zhulenev
bc66c88255 Add async evaluation support to TensorPadding/TensorImagePatch/TensorShuffling 2019-11-26 11:41:57 -08:00
Hans Johnson
8c8cab1afd STYLE: Convert CMake-language commands to lower case
Ancient CMake versions required upper-case commands.  Later command names
became case-insensitive.  Now the preferred style is lower-case.
2019-10-31 11:36:37 -05:00
Hans Johnson
6fb3e5f176 STYLE: Remove CMake-language block-end command arguments
Ancient versions of CMake required else(), endif(), and similar block
termination commands to have arguments matching the command starting the block.
This is no longer the preferred style.
2019-10-31 11:36:27 -05:00