The existing `Ref` class failed to consider cases where the Ref's
`Stride` setting *could* match the underlying referred object's stride,
but **didn't** at runtime. This led to trying to set invalid stride values,
causing runtime failures in some cases, and garbage due to mismatched
strides in others.
Here we add the missing runtime checks. This involves computing the
strides necessary to align with the referred object's storage, and
verifying we can actually set those strides at runtime.
In the `const` case, if it *may* be possible to refer to the original
storage at compile-time but fails at runtime, then we defer to the
`construct(...)` method that makes a copy.
Added more tests to check these cases.
Fixes#2093.
This is to support scalar `sqrt` of complex numbers `std::complex<T>` on
device, requested by Tensorflow folks.
Technically `std::complex` is not supported by NVCC on device
(though it is by clang), so the default `sqrt(std::complex<T>)` function only
works on the host. Here we create an overload to add back the
functionality.
Also modified the CMake file to add `--relaxed-constexpr` (or
equivalent) flag for NVCC to allow calling constexpr functions from
device functions, and added support for specifying compute architecture for
NVCC (was already available for clang).
Removed m_dimension as instance member of TensorStorage with
FixedDimensions and instead use the template parameter. This
means that the sizeof a pure fixed-size storage is exactly
equal to the data it is storing.
For these to exist we would need to define `_USE_MATH_DEFINES` before
`cmath` or `math.h` is first included. However, we don't
control the include order for projects outside Eigen, so even defining
the macro in `Eigen/Core` does not fix the issue for projects that
end up including `<cmath>` before Eigen does (explicitly or transitively).
To fix this, we define `EIGEN_LOG2E` and `EIGEN_LN2` ourselves.
The following commit introduced a breakage in ROCm/HIP support for Eigen.
5ec4907434 (1958e65719641efe5483abc4ce0b61806270f6f3_525_517)
```
Building HIPCC object test/CMakeFiles/gpu_basic.dir/gpu_basic_generated_gpu_basic.cu.o
In file included from /home/rocm-user/eigen/test/gpu_basic.cu:20:
In file included from /home/rocm-user/eigen/test/main.h:356:
In file included from /home/rocm-user/eigen/Eigen/QR:11:
In file included from /home/rocm-user/eigen/Eigen/Core:222:
/home/rocm-user/eigen/Eigen/src/Core/arch/GPU/PacketMath.h:556:10: error: use of undeclared identifier 'half2half2'; did you mean '__half2half2'?
return half2half2(from);
^~~~~~~~~~
__half2half2
/opt/rocm/hip/include/hip/hcc_detail/hip_fp16.h:547:21: note: '__half2half2' declared here
__half2 __half2half2(__half x)
^
1 error generated when compiling for gfx900.
```
The cause seems to be a copy-paster error, and the fix is trivial
The previous code had `__host__ __device__` functions calling `__device__`
functions (e.g. `__low2half`) which caused build failures in tensorflow.
Also tried to simplify the `#ifdef` guards to make them more clear.
In the current `dense_assignment_loop` implementations, if the
destination's inner or outer size is zero at compile time and if the kernel
involves a product, we currently get a compile error (#2080). This is
triggered by attempting to multiply a non-existent row by a column (or
vice-versa).
To address this, we add a specialization for zero-sized assignments
(`AllAtOnceTraversal`) which evaluates to a no-op. We also add a static
check to ensure the size is in-fact zero. This now seems to be the only
existing use of `AllAtOnceTraversal`.
Fixes#2080.
Removed redundant checks and redundant code for CUDA/HIP.
Note: there are several issues here of calling `__device__` functions
from `__host__ __device__` functions, in particular `__low2half`.
We do not address that here -- only modifying this file enough
to get our current tests to compile.
Fixed: #1847
Current implementations fail to consider half-float packets, only
half-float scalars. Added specializations for packets on AVX, AVX512 and
NEON. Added tests to `special_packetmath`.
The current `special_functions` tests would fail for half and bfloat16 due to
lack of precision. The NEON tests also fail with precision issues and
due to different handling of `sqrt(inf)`, so special functions bessel, ndtri
have been disabled.
Tested with AVX, AVX512.
The `shfl*` functions are `__device__` only, and adjusted `#ifdef`s so
they are defined whenever the corresponding CUDA/HIP ones are.
Also changed the HIP/CUDA<9.0 versions to cast to int instead of
doing the conversion `half`<->`float`.
Fixes#2083
Adding the term e*ln(2) is split into two step for no obvious reason.
This dates back to the original Cephes code from which the algorithm is adapted.
It appears that this was done in Cephes to prevent the compiler from reordering
the addition of the 3 terms in the approximation
log(1+x) ~= x - 0.5*x^2 + x^3*P(x)/Q(x)
which must be added in reverse order since |x| < (sqrt(2)-1).
This allows rewriting the code to just 2 pmadd and 1 padd instructions,
which on a Skylake processor speeds up the code by 5-7%.
The current impl corrupts the comparison masks when converting
from float back to bfloat16. The resulting masks are then
no longer all zeros or all ones, which breaks when used with
`pselect` (e.g. in `pmin<PropagateNumbers>`). This was
causing `packetmath_15` to fail on arm.
Introducing a simple `F32MaskToBf16Mask` corrects this (takes
the lower 16-bits for each float mask).
Prior to this fix, `TensorContractionGpu` and the `cxx11_tensor_of_float16_gpu`
test are broken, as well as several ops in Tensorflow. The gpu functions
`__shfl*` became ambiguous now that `Eigen::half` implicitly converts to float.
Here we add the required specializations.
`bit_cast` cannot be `constexpr`, so we need to remove `EIGEN_CONSTEXPR` from
`raw_half_as_uint16(...)`. This shouldn't affect anything else, since
it is only used in `a bit_cast<uint16_t,half>()` which is not itself
`constexpr`.
Fixes#2077.
This allows the `packetmath` tests to pass for AVX512 on skylake.
Made `half` and `bfloat16` consistent in terms of ops they support.
Note the `log` tests are currently disabled for `bfloat16` since
they fail due to poor precision (they were previously disabled for
`Packet8bf` via test function specialization -- I just removed that
specialization and disabled it in the generic test).