commainitialier unit-test never actually called `test_block_recursion`, which also was not correctly implemented and would have caused too deep template recursion.
For random matrices with integer coefficients, many of the tests here lead to
integer overflows. When taking the norm() of a row/column, the squaredNorm()
often overflows to a negative value, leading to domain errors when taking the
sqrt(). This leads to a crash on some systems. By replacing the norm() call by
a squaredNorm(), the values still overflow, but at least there is no domain
error.
Addresses https://gitlab.com/libeigen/eigen/-/issues/1856
This provides a new op that matches std::rint and previous behavior of
pround. Also adds corresponding unsupported/../Tensor op.
Performance is the same as e. g. floor (tested SSE/AVX).
This fixes deprecated-copy warnings when compiling with GCC>=9
Also protect some additional Base-constructors from getting called by user code code (#1587)
This change re-instates the fast rational approximation of the logistic function for float32 in Eigen (removed in 66f07efeae), but uses the more accurate approximation 1/(1+exp(-1)) ~= exp(x) below -9. The exponential is only calculated on the vectorized path if at least one element in the SIMD input vector is less than -9.
This change also contains a few improvements to speed up the original float specialization of logistic:
- Introduce EIGEN_PREDICT_{FALSE,TRUE} for __builtin_predict and use it to predict that the logistic-only path is most likely (~2-3% speedup for the common case).
- Carefully set the upper clipping point to the smallest x where the approximation evaluates to exactly 1. This saves the explicit clamping of the output (~7% speedup).
The increased accuracy for tanh comes at a cost of 10-20% depending on instruction set.
The benchmarks below repeated calls
u = v.logistic() (u = v.tanh(), respectively)
where u and v are of type Eigen::ArrayXf, have length 8k, and v contains random numbers in [-1,1].
Benchmark numbers for logistic:
Before:
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
SSE
BM_eigen_logistic_float 4467 4468 155835 model_time: 4827
AVX
BM_eigen_logistic_float 2347 2347 299135 model_time: 2926
AVX+FMA
BM_eigen_logistic_float 1467 1467 476143 model_time: 2926
AVX512
BM_eigen_logistic_float 805 805 858696 model_time: 1463
After:
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
SSE
BM_eigen_logistic_float 2589 2590 270264 model_time: 4827
AVX
BM_eigen_logistic_float 1428 1428 489265 model_time: 2926
AVX+FMA
BM_eigen_logistic_float 1059 1059 662255 model_time: 2926
AVX512
BM_eigen_logistic_float 673 673 1000000 model_time: 1463
Benchmark numbers for tanh:
Before:
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
SSE
BM_eigen_tanh_float 2391 2391 292624 model_time: 4242
AVX
BM_eigen_tanh_float 1256 1256 554662 model_time: 2633
AVX+FMA
BM_eigen_tanh_float 823 823 866267 model_time: 1609
AVX512
BM_eigen_tanh_float 443 443 1578999 model_time: 805
After:
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
SSE
BM_eigen_tanh_float 2588 2588 273531 model_time: 4242
AVX
BM_eigen_tanh_float 1536 1536 452321 model_time: 2633
AVX+FMA
BM_eigen_tanh_float 1007 1007 694681 model_time: 1609
AVX512
BM_eigen_tanh_float 471 471 1472178 model_time: 805
This also adds pset1frombits helper to Packet[24]d.
Makes round ~45% slower for SSE: 1.65µs ± 1% before vs 2.45µs ± 2% after,
stil an order of magnitude faster than scalar version: 33.8µs ± 2%.
Ancient versions of CMake required else(), endif(), and similar block
termination commands to have arguments matching the command starting the block.
This is no longer the preferred style.
2. Simplify handling of special cases by taking advantage of the fact that the
builtin vrsqrt approximation handles negative, zero and +inf arguments correctly.
This speeds up the SSE and AVX implementations by ~20%.
3. Make the Newton-Raphson formula used for rsqrt more numerically robust:
Before: y = y * (1.5 - x/2 * y^2)
After: y = y * (1.5 - y * (x/2) * y)
Forming y^2 can overflow for very large or very small (denormalized) values of x, while x*y ~= 1. For AVX512, this makes it possible to compute accurate results for denormal inputs down to ~1e-42 in single precision.
4. Add a faster double precision implementation for Knights Landing using the vrsqrt28 instruction and a single Newton-Raphson iteration.
Benchmark results: https://bitbucket.org/snippets/rmlarsen/5LBq9o
- Split SpecialFunctions files in to a separate BesselFunctions file.
In particular add:
- Modified bessel functions of the second kind k0, k1, k0e, k1e
- Bessel functions of the first kind j0, j1
- Bessel functions of the second kind y0, y1