To get the links to work, I also had to document the Eigen namespace.
Unfortunately, this means that the word Eigen is linked whenever it appears
in the docs.
. It turns out that the SSE3 header is always included, even without any SSE enabled, so it was making us wrongly use SSE3 paths. Backing this out fixes msvc related crashes, at least bug #165.
intrin.h is not required nor supported by mingw32. It is present (and supported) on mingw-w64 builds, even those for 32-bit systems, but here too it's not required on 32-bit systems. So if we're on mingw, and it's 64-bit, then and only then is the intrin.h inclusion necessary.
Rationale: coeffRef() methods should only exist when we have DirectAccess. So a natural thing to do would have been to use enable_if, but since there are many methods it made more sense to do the "enable_if" for the whole group by introducing a new class. And that also that the benefit of not changing method prototypes.
* Introduction of strides-at-compile-time so for example the optimized code really knows when it needs to evaluate to a temporary
* StorageKind / XprKind
* Quaternion::setFromTwoVectors: use JacobiSVD instead of SVD
* ComplexSchur: support the 1x1 case
* kill EIGEN_DONT_ALIGN_HEAP option (one should use EIGEN_DONT_ALIGN)
* rename EIGEN_DONT_ALIGN_STACK to EIGEN_DONT_ALIGN_STATICALLY. hope it's a better name.
as gcc on ARM (both CodeSourcery 4.4.1 used and experimental 4.5) fail to
ensure proper alignment with __attribute__((aligned(16))). This has to be
fixed upstream to remove the workarounds.
Rewrote ei_handmade_aligned_realloc such that it is now using std::realloc.
Reorganized functions in Memory.h for better readability.
Add missing <cerrno> include to Core (it's now required in Memory.h).
(sse3, ssse3 and sse4), independantly from the compiler.
Only those defines should be used in other places, and the user can
rely on those to know which sets are used.
* introduce a lazy product version of the coefficient based implementation
=> flagged is not used anymore
=> small outer product are now lazy by default (aliasing is really unlikely for outer products)
because thanks to the previous commit this is not needed anymore
* add a more general ForceAlignedAccess expression which can be used for any expression.
It is already used by StableNorm.h.
Add an internal pseudo expression allowing to optimize operators like +=, *= using
the copyCoeff stuff.
This allows to easily enforce aligned load for the destination matrix everywhere.
* add a new Eigen2Support module including Cwise, Flagged, and some other deprecated stuff
* add a few cwiseXxx functions
* adapt a few modules to use cwiseXxx instead of the .cwise() prefix
construction of generic expressions working
for both dense and sparse matrix. A nicer solution
would be to use CwiseBinaryOp for any kind of matrix.
To this end we either need to change the overall design
so that the base class(es) depends on the kind of matrix,
or we could add a template parameter to each expression
type (e.g., int Kind = ei_traits<MatrixType>::Kind)
allowing to specialize each expression for each kind of matrix.
* Extend AutoDiffScalar to work with sparse vector expression
for the derivatives.
- rename EvalBeforeAssignBit to MayAliasBit
- make .lazy() remove the MayAliasBit only, and mark it as deprecated
- add a NoAlias pseudo expression, and MatrixBase::noalias() function
Todo:
- we have to decide whether += and -= assume no aliasing by default ?
- once we agree on the API: update the Sparse module and the unit tests respectively.
* move solveTriangular*() to TriangularView::solve*()
* move .llt() to SelfAdjointView
* add a high level wrapper to the efficient selfadjoint * vector product
* improve LLT so that we can specify which triangular part is meaningless
=> there are still many things to do (doc, cleaning, improve the matrix products, etc.)
introduce ei_is_diagonal to check for it
DiagonalCoeffs ---> Diagonal and allow Index to by Dynamic
-> add MatrixBase::diagonal(int) with unittest and doc
Until now, the user had to edit the source code to do that.
Internally, add EIGEN_ALIGN that takes into account both EIGEN_DONT_ALIGN.and
EIGEN_ARCH_WANTS_ALIGNMENT. From now on, only EIGEN_ALIGN should be used to
test whether we want to align.
Pommier. They are for float only, and they return exactly the same
result as the standard versions in about 90% of the cases. Otherwise the max error
is below 1e-7. However, for very large values (>1e3) the accuracy of sin and cos
slighlty decrease. They are about 3 or 4 times faster than 4 calls to their respective
standard versions. So, is it ok to enable them by default in their respective functors ?
* add Homogeneous expression for vector and set of vectors (aka matrix)
=> the next step will be to overload operator*
* add homogeneous normalization (again for vector and set of vectors)
* add a Replicate expression (with uni-directional replication
facilities)
=> for all of them I'll add examples once we agree on the API
* fix gcc-4.4 warnings
* rename reverse.cpp array_reverse.cpp
* add an efficient selfadjoint * vector implementation (= blas symv)
perf are inbetween MKL and GOTO
=> the interface is still missing (have to be rethougth)
IoFormat OctaveFmt(4, AlignCols, ", ", ";\n", "", "", "[", "]");
cout << mat.format(OctaveFmt);
The first "4" is the precision.
Documentation missing.
* Some compilation fixes
- added a MapBase base xpr on top of which Map and the specialization
of Block are implemented
- MapBase forces both aligned loads (and aligned stores, see below) in expressions
such as "x.block(...) += other_expr"
* Significant vectorization improvement:
- added a AlignedBit flag meaning the first coeff/packet is aligned,
this allows to not generate extra code to deal with the first unaligned part
- removed all unaligned stores when no unrolling
- removed unaligned loads in Sum when the input as the DirectAccessBit flag
* Some code simplification in CacheFriendly product
* Some minor documentation improvements
=> up to 6 times faster !
* Added DirectAccessBit to Part
* Added an exemple of a cwise operator
* Renamed perpendicular() => someOrthogonal() (geometry module)
* Fix a weired bug in ei_constant_functor: the default copy constructor did not copy
the imaginary part when the single member of the class is a complex...
Renamed "MatrixBase::extract() const" to "MatrixBase::part() const"
* Renamed static functions identity, zero, ones, random with an upper case
first letter: Identity, Zero, Ones and Random.
and vector * row-major products. Currently, it is enabled only is the matrix
has DirectAccessBit flag and the product is "large enough".
Added the respective unit tests in test/product/cpp.
(could come back to redux after it has been vectorized,
and could serve as a starting point for that)
also make the abs2 functor vectorizable (for real types).
to optimize matrix-diag and diag-matrix products without
making Product over complicated.
* compilation fixes in Tridiagonalization and HessenbergDecomposition
in the case of 2x2 matrices.
* added an Orientation2D small class with similar interface than Quaternion
(used by Transform to handle 2D and 3D orientations seamlessly)
* added a couple of features in Transform.
was a sign that we were doing something wrong. In fact, having
NestByValue as a special case of Flagged was wrong, and the previous
commit, while not buggy, was inefficient because then when the resulting
NestByValue xpr was nested -- hence copied -- the original xpr which was
already nested by value was copied again; hence instead of 1 copy we got
3 copies.
The solution was to ressuscitate the old Temporary.h (renamed
NestByValue.h) as it was the right approach.
finally that's more subtle than just using ei_nested, because when
flagging with NestByValueBit we want to store the expression by value
already, regardless of whether it already had the NestByValueBit set.
* rename temporary() ----> nestByValue()
* move the old Product.h to disabled/, replace by what was ProductWIP.h
* tweak -O and -g flags for tests and examples
* reorder the tests -- basic things go first
* simplifications, e.g. in many methoeds return derived() and count on
implicit casting to the actual return type.
* strip some not-really-useful stuff from the heaviest tests
Triangular class
- full meta-unrolling in Part
- move inverseProduct() to MatrixBase
- compilation fix in ProductWIP: introduce a meta-selector to only do
direct access on types that support it.
- phase out the old Product, remove the WIP_DIRTY stuff.
- misc renaming and fixes
(does not support complex and does not re-use the QR decomposition)
* Rewrite the cache friendly product to have only one instance per scalar type !
This significantly speeds up compilation time and reduces executable size.
The current drawback is that some trivial expressions might be
evaluated like conjugate or negate.
* Renamed "cache optimal" to "cache friendly"
* Added the ability to directly access matrix data of some expressions via:
- the stride()/_stride() methods
- DirectAccessBit flag (replace ReferencableBit)
* Fix compilation of Inverse.h with vectorisation
* Introduce EIGEN_GNUC_AT_LEAST(x,y) macro doing future-proof (e.g. gcc v5.0) check
* Only use ProductWIP if vectorisation is enabled
* rename EIGEN_ALWAYS_INLINE -> EIGEN_INLINE with fall-back to inline keyword
* some cleanup/indentation
(needed by the new product implementation)
* Make the packet* members template to support aligned and unaligned
access. This makes Block vectorizable. Combined with ReferencableBit,
we should be able to determine at runtime (in some specific cases) if
an aligned vectorization is possible or not.
* Improved the new product implementation to robustly handle all cases,
it now passes all the tests.
* Renamed the packet version ei_predux to ei_preduxp to avoid name collision.
* Introduce a new highly optimized matrix-matrix product for large
matrices. The code is still highly experimental and it is activated
only if you define EIGEN_WIP_PRODUCT at compile time.
Currently the third dimension of the product must be a factor of
the packet size (x4 for floats) and the right handed side matrix
must be column major.
Moreover, currently c = a*b; actually computes c += a*b !!
Therefore, the code is provided for experimentation purpose only !
These limitations will be fixed soon or later to become the default
product implementation.
m.upper() = a+b;
only updates the upper triangular part of m.
Note that:
m = (a+b).upper();
updates all coefficients of m (but half of the additions
will be skiped)
Updated back/forward substitution to better use Eigen's capability.
part of a matrix. Triangular also provide an optimised method for forward
and backward substitution. Further optimizations regarding assignments and
products might come later.
Updated determinant() to take into account triangular matrices.
Started the QR module with a QR decompostion algorithm.
Help needed to build a QR algorithm (eigen solver) based on it.
- support dynamic sizes
- support arbitrary matrix size when the matrix can be seen as a 1D array
(except for fixed size matrices where the size in Bytes must be a factor of 16,
this is to allow compact storage of a vector of matrices)
Note that the explict vectorization is still experimental and far to be completely tested.
are provided to handle not suported types seemlessly.
Added a generic null-ary expression with null-ary functors. They replace
Zero, Ones, Identity and Random.
* add -pedantic to CXXFLAGS
* cleanup intricated expressions with && and ||
which gave warnings because of "missing" parentheses
* fix compile error in NumTraits, apparently discovered
by -pedantic
Currently only the following platform/operations are supported:
- SSE2 compatible architecture
- compiler compatible with intel's SSE2 intrinsics
- float, double and int data types
- fixed size matrices with a storage major dimension multiple of 4 (or 2 for double)
- scalar-matrix product, component wise: +,-,*,min,max
- matrix-matrix product only if the left matrix is vectorizable and column major
or the right matrix is vectorizable and row major, e.g.:
a.transpose() * b is not vectorized with the default column major storage.
To use it you must define EIGEN_VECTORIZE and EIGEN_INTEL_PLATFORM.
in ei_xpr_copy and operator=, respectively.
* added Matrix::lazyAssign() when EvalBeforeAssigningBit must be skipped
(mainly internal use only)
* all expressions are now stored by const reference
* added Temporary xpr: .temporary() must be called on any temporary expression
not directly returned by a function (mainly internal use only)
* moved all functors in the Functors.h header
* added some preliminaries stuff for the explicit vectorization
to preserve SVN history). They are made useless by the new
ei_eval_unless_lazy.
- introduce a generic Eval member typedef so one can do e.g.
T t; U u; Product<T, U>::Eval m; m = t*u;
* macro renaming: EIGEN_NDEBUG becomes EIGEN_NO_DEBUG
as this is much better (and similar to Qt) and
EIGEN_CUSTOM_ASSERT becomes EIGEN_USE_CUSTOM_ASSERT
* protect Core header by a EIGEN_CORE_H
as well as partial redux (vertical or horizontal redux).
Includes shortcuts for: sum, minCoeff and maxCoeff.
There is no shortcut for the partial redux.
* Added a generic *visitor* mini framework. A visitor is a custom object
sequentially applied on each coefficient with knowledge of its value and
coordinates.
It is currentlly used to implement minCoeff(int*,int*) and maxCoeff(int*,int*).
findBiggestCoeff is now a shortcut for "this->cwiseAbs().maxCoeff(i,j)"
* Added coeff-wise min and max.
* fixed an issue with ei_pow(int,int) and gcc < 4.3 or ICC
If the number of coefficients does not match the matrix size, then an assertion is raised.
No support for xpr on the right side for the moment.
* Added support for assertion checking. This allows to test that an assertion is indeed raised
when it should be.
* Fixed a mistake in the CwiseUnary example.
- compatible with current STL's functors as well as with the extention proposal (TR1)
* thanks to the above, Cast and ScalarMultiple have been removed
* benchmark_suite is more flexible (compiler and matrix size)
* functor templates are not template template parameter anymore
(this allows to make templated functors !)
* Main page: extented compiler discussion
* A small hack to support gcc 3.4 and 4.0 (see the main page)
* Fix a cast type issue in Cast
* Various doxygen updates (mainly Cwise stuff and added doxygen groups
in MatrixBase to split the huge memeber list, still not perfect though)
* Updated Gael's email address
Rework the matrix storage to ensure optimal sizeof in all cases, while
keeping the decoupling of matrix sizes versus storage sizes.
Also fixing (recently introduced) bugs caused by unwanted
reallocations of the buffers.
- finally get the Eval stuff right. get back to having Eval as
a subclass of Matrix with limited functionality, and then,
add a typedef MatrixType to get the actual matrix type.
- add swap(), findBiggestCoeff()
- bugfix by Ramon in Transpose
- new demo: doc/echelon.cpp
dimension. The advantage is that evaluating a dynamic-sized block in a fixed-size
matrix no longer causes a dynamic memory allocation. Other new thing:
IntAtRunTimeIfDynamic allows storing an integer at zero cost if it is known at
compile time.
1) Eigen2 co-installable with Eigen1 without conflict, without affecting programs including either.
2) #include<Eigen/Core> without the .h without conflict with the Core/ directory
3) Uniformize coding style of the CMakeLists.
This is an optimization for complex matrices, allowing to do only a real multiplication
when a complex multiplication is not needed, e.g. in normalized().
with minimal code duplication. There now are only two (2)
const_cast remaining in the whole source code.
- eigen2 now fully allows copying a row-vector into a column-vector.
added a unit-test for that.
- split unit tests, improve docs, various improvements.
- make vectors use a separate loop unroller, so that copying a
row-vector into a col-vector is now possible
- add much more documentation
- misc improvements