Eugene Zhulenev
553caeb6a3
Use ThreadLocal container in TensorContractionThreadPool
2019-09-13 12:14:44 -07:00
Srinivas Vasudevan
facdec5aa7
Add packetized versions of i0e and i1e special functions.
...
- In particular refactor the i0e and i1e code so scalar and vectorized path share code.
- Move chebevl to GenericPacketMathFunctions.
A brief benchmark with building Eigen with FMA, AVX and AVX2 flags
Before:
CPU: Intel Haswell with HyperThreading (6 cores)
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
BM_eigen_i0e_double/1 57.3 57.3 10000000
BM_eigen_i0e_double/8 398 398 1748554
BM_eigen_i0e_double/64 3184 3184 218961
BM_eigen_i0e_double/512 25579 25579 27330
BM_eigen_i0e_double/4k 205043 205042 3418
BM_eigen_i0e_double/32k 1646038 1646176 422
BM_eigen_i0e_double/256k 13180959 13182613 53
BM_eigen_i0e_double/1M 52684617 52706132 10
BM_eigen_i0e_float/1 28.4 28.4 24636711
BM_eigen_i0e_float/8 75.7 75.7 9207634
BM_eigen_i0e_float/64 512 512 1000000
BM_eigen_i0e_float/512 4194 4194 166359
BM_eigen_i0e_float/4k 32756 32761 21373
BM_eigen_i0e_float/32k 261133 261153 2678
BM_eigen_i0e_float/256k 2087938 2088231 333
BM_eigen_i0e_float/1M 8380409 8381234 84
BM_eigen_i1e_double/1 56.3 56.3 10000000
BM_eigen_i1e_double/8 397 397 1772376
BM_eigen_i1e_double/64 3114 3115 223881
BM_eigen_i1e_double/512 25358 25361 27761
BM_eigen_i1e_double/4k 203543 203593 3462
BM_eigen_i1e_double/32k 1613649 1613803 428
BM_eigen_i1e_double/256k 12910625 12910374 54
BM_eigen_i1e_double/1M 51723824 51723991 10
BM_eigen_i1e_float/1 28.3 28.3 24683049
BM_eigen_i1e_float/8 74.8 74.9 9366216
BM_eigen_i1e_float/64 505 505 1000000
BM_eigen_i1e_float/512 4068 4068 171690
BM_eigen_i1e_float/4k 31803 31806 21948
BM_eigen_i1e_float/32k 253637 253692 2763
BM_eigen_i1e_float/256k 2019711 2019918 346
BM_eigen_i1e_float/1M 8238681 8238713 86
After:
CPU: Intel Haswell with HyperThreading (6 cores)
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
BM_eigen_i0e_double/1 15.8 15.8 44097476
BM_eigen_i0e_double/8 99.3 99.3 7014884
BM_eigen_i0e_double/64 777 777 886612
BM_eigen_i0e_double/512 6180 6181 100000
BM_eigen_i0e_double/4k 48136 48140 14678
BM_eigen_i0e_double/32k 385936 385943 1801
BM_eigen_i0e_double/256k 3293324 3293551 228
BM_eigen_i0e_double/1M 12423600 12424458 57
BM_eigen_i0e_float/1 16.3 16.3 43038042
BM_eigen_i0e_float/8 30.1 30.1 23456931
BM_eigen_i0e_float/64 169 169 4132875
BM_eigen_i0e_float/512 1338 1339 516860
BM_eigen_i0e_float/4k 10191 10191 68513
BM_eigen_i0e_float/32k 81338 81337 8531
BM_eigen_i0e_float/256k 651807 651984 1000
BM_eigen_i0e_float/1M 2633821 2634187 268
BM_eigen_i1e_double/1 16.2 16.2 42352499
BM_eigen_i1e_double/8 110 110 6316524
BM_eigen_i1e_double/64 822 822 851065
BM_eigen_i1e_double/512 6480 6481 100000
BM_eigen_i1e_double/4k 51843 51843 10000
BM_eigen_i1e_double/32k 414854 414852 1680
BM_eigen_i1e_double/256k 3320001 3320568 212
BM_eigen_i1e_double/1M 13442795 13442391 53
BM_eigen_i1e_float/1 17.6 17.6 41025735
BM_eigen_i1e_float/8 35.5 35.5 19597891
BM_eigen_i1e_float/64 240 240 2924237
BM_eigen_i1e_float/512 1424 1424 485953
BM_eigen_i1e_float/4k 10722 10723 65162
BM_eigen_i1e_float/32k 86286 86297 8048
BM_eigen_i1e_float/256k 691821 691868 1000
BM_eigen_i1e_float/1M 2777336 2777747 256
This shows anywhere from a 50% to 75% improvement on these operations.
I've also benchmarked without any of these flags turned on, and got similar
performance to before (if not better).
Also tested packetmath.cpp + special_functions to ensure no regressions.
2019-09-11 18:34:02 -07:00
Deven Desai
cdb377d0cb
Fix for the HIP build+test errors introduced by the ndtri support.
...
The fixes needed are
* adding EIGEN_DEVICE_FUNC attribute to a couple of funcs (else HIPCC will error out when non-device funcs are called from global/device funcs)
* switching to using ::<math_func> instead std::<math_func> (only for HIPCC) in cases where the std::<math_func> is not recognized as a device func by HIPCC
* removing an errant "j" from a testcase (don't know how that made it in to begin with!)
2019-09-06 16:03:49 +00:00
Eugene Zhulenev
d918bd9a8b
Update ThreadLocal to use separate Initialize/Release callables
2019-09-10 16:13:32 -07:00
Eugene Zhulenev
e3dec4dcc1
ThreadLocal container that does not rely on thread local storage
2019-09-09 15:18:14 -07:00
Srinivas Vasudevan
e38dd48a27
PR 681: Add ndtri function, the inverse of the normal distribution function.
2019-08-12 19:26:29 -04:00
Eugene Zhulenev
47fefa235f
Allow move-only done callback in TensorAsyncDevice
2019-09-03 17:20:56 -07:00
Eugene Zhulenev
f68f2bba09
TensorMap constness should not change underlying storage constness
2019-09-03 11:08:09 -07:00
Alberto Luaces
c694be1214
Fixed Tensor documentation formatting.
2019-07-23 09:24:06 +00:00
Eugene Zhulenev
79c402e40e
Fix shadow warnings in TensorContractionThreadPool
2019-08-30 15:38:31 -07:00
Eugene Zhulenev
edf2ec28d8
Fix block mapper type name in TensorExecutor
2019-08-30 15:29:25 -07:00
Eugene Zhulenev
f0b36fb9a4
evalSubExprsIfNeededAsync + async TensorContractionThreadPool
2019-08-30 15:13:38 -07:00
Eugene Zhulenev
619cea9491
Revert accidentally removed <memory> header from ThreadPool
2019-08-30 14:51:17 -07:00
Eugene Zhulenev
66665e7e76
Asynchronous expression evaluation with TensorAsyncDevice
2019-08-30 14:49:40 -07:00
Eugene Zhulenev
bc40d4522c
Const correctness in TensorMap<const Tensor<T, ...>> expressions
2019-08-28 17:46:05 -07:00
Eugene Zhulenev
6e77f9bef3
Remove shadow warnings in TensorDeviceThreadPool
2019-08-28 10:32:19 -07:00
Rasmus Larsen
84fefdf321
Merged in ezhulenev/eigen-01 (pull request PR-683)
...
Asynchronous parallelFor in Eigen ThreadPoolDevice
2019-08-26 21:49:17 +00:00
maratek
8b5ab0e4dd
Fix get_random_seed on Native Client
...
Newlib in Native Client SDK does not provide ::random function.
Implement get_random_seed for NaCl using ::rand, similarly to Windows version.
2019-08-23 15:25:56 -07:00
Eugene Zhulenev
6901788013
Asynchronous parallelFor in Eigen ThreadPoolDevice
2019-08-22 10:50:51 -07:00
Eugene Zhulenev
071311821e
Remove XSMM support from Tensor module
2019-08-19 11:44:25 -07:00
Rasmus Munk Larsen
eab7e52db2
[Eigen] Vectorize evaluation of coefficient-wise functions over tensor blocks if the strides are known to be 1. Provides up to 20-25% speedup of the TF cross entropy op with AVX.
...
A few benchmark numbers:
name old time/op new time/op delta
BM_Xent_16_10000_cpu 448µs ± 3% 389µs ± 2% -13.21%
(p=0.008 n=5+5)
BM_Xent_32_10000_cpu 575µs ± 6% 454µs ± 3% -21.00% (p=0.008 n=5+5)
BM_Xent_64_10000_cpu 933µs ± 4% 712µs ± 1% -23.71% (p=0.008 n=5+5)
2019-08-07 12:57:42 -07:00
Rasmus Munk Larsen
0987126165
Clean up unnecessary namespace specifiers in TensorBlock.h.
2019-08-07 12:12:52 -07:00
Rasmus Munk Larsen
e2999d4c38
Fix performance regressions due to https://bitbucket.org/eigen/eigen/pull-requests/662 .
...
The change caused the device struct to be copied for each expression evaluation, and caused, e.g., a 10% regression in the TensorFlow multinomial op on GPU:
Benchmark Time(ns) CPU(ns) Iterations
----------------------------------------------------------------------
BM_Multinomial_gpu_1_100000_4 128173 231326 2922 1.610G items/s
VS
Benchmark Time(ns) CPU(ns) Iterations
----------------------------------------------------------------------
BM_Multinomial_gpu_1_100000_4 146683 246914 2719 1.509G items/s
2019-08-02 11:18:13 -07:00
Eugene Zhulenev
3cd148f983
Fix expression evaluation heuristic for TensorSliceOp
2019-07-09 12:10:26 -07:00
Eugene Zhulenev
6083014594
Add outer/inner chipping optimization for chipping dimension specified at runtime
2019-07-03 11:35:25 -07:00
Deven Desai
7eb2e0a95b
adding the EIGEN_DEVICE_FUNC attribute to the constCast routine.
...
Not having this attribute results in the following failures in the `--config=rocm` TF build.
```
In file included from tensorflow/core/kernels/cross_op_gpu.cu.cc:20:
In file included from ./tensorflow/core/framework/register_types.h:20:
In file included from ./tensorflow/core/framework/numeric_types.h:20:
In file included from ./third_party/eigen3/unsupported/Eigen/CXX11/Tensor:1:
In file included from external/eigen_archive/unsupported/Eigen/CXX11/Tensor:140:
external/eigen_archive/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h:356:37: error: 'Eigen::constCast': no overloaded function has restriction specifiers that are compatible with the ambient context 'data'
typename Storage::Type result = constCast(m_impl.data());
^
external/eigen_archive/unsupported/Eigen/CXX11/src/Tensor/TensorChipping.h:356:37: error: 'Eigen::constCast': no overloaded function has restriction specifiers that are compatible with the ambient context 'data'
external/eigen_archive/unsupported/Eigen/CXX11/src/Tensor/TensorAssign.h:148:56: note: in instantiation of member function 'Eigen::TensorEvaluator<const Eigen::TensorChippingOp<1, Eigen::TensorMap<Eigen::Tensor<int, 2, 1, long>, 16, MakePointer> >, Eigen::Gpu\
Device>::data' requested here
return m_rightImpl.evalSubExprsIfNeeded(m_leftImpl.data());
```
Adding the EIGEN_DEVICE_FUNC attribute resolves those errors
2019-07-02 20:02:46 +00:00
Gael Guennebaud
ef8aca6a89
Merged in codeplaysoftware/eigen (pull request PR-667)
...
[SYCL] :
Approved-by: Gael Guennebaud <g.gael@free.fr>
Approved-by: Rasmus Larsen <rmlarsen@google.com>
2019-07-02 12:45:23 +00:00
Eugene Zhulenev
4ac93f8edc
Allocate non-const scalar buffer for block evaluation with DefaultDevice
2019-07-01 10:55:19 -07:00
Mehdi Goli
9ea490c82c
[SYCL] :
...
* Modifying TensorDeviceSYCL to use `EIGEN_THROW_X`.
* Modifying TensorMacro to use `EIGEN_TRY/CATCH(X)` macro.
* Modifying TensorReverse.h to use `EIGEN_DEVICE_REF` instead of `&`.
* Fixing the SYCL device macro in SpecialFunctionsImpl.h.
2019-07-01 16:27:28 +01:00
Eugene Zhulenev
81a03bec75
Fix TensorReverse on GPU with m_stride[i]==0
2019-06-28 15:50:39 -07:00
Rasmus Munk Larsen
74a9dd1102
Fix preprocessor condition to only generate a warning when calling eigen::GpuDevice::synchronize() from device code, but not when calling from a non-GPU compilation unit.
2019-06-28 11:56:21 -07:00
Rasmus Munk Larsen
70d4020ad9
Remove comma causing warning in c++03 mode.
2019-06-28 11:39:45 -07:00
Eugene Zhulenev
6e7c76481a
Merge with Eigen head
2019-06-28 11:22:46 -07:00
Eugene Zhulenev
878845cb25
Add block access to TensorReverseOp and make sure that TensorForcedEval uses block access when preferred
2019-06-28 11:13:44 -07:00
Mehdi Goli
7d08fa805a
[SYCL] This PR adds the minimum modifications to the Eigen unsupported module required to run it on devices supporting SYCL.
...
* Abstracting the pointer type so that both SYCL memory and pointer can be captured.
* Converting SYCL virtual pointer to SYCL device memory in Eigen evaluator class.
* Binding SYCL placeholder accessor to command group handler by using bind method in Eigen evaluator node.
* Adding SYCL macro for controlling loop unrolling.
* Modifying the TensorDeviceSycl.h and SYCL executor method to adopt the above changes.
2019-06-28 10:08:23 +01:00
Christoph Hertzberg
adec097c61
Remove extra comma (causes warnings in C++03)
2019-06-26 16:14:28 +02:00
Eugene Zhulenev
229db81572
Optimize evaluation strategy for TensorSlicingOp and TensorChippingOp
2019-06-25 15:41:37 -07:00
Rasmus Munk Larsen
b08527b0c1
Clean up CUDA/NVCC version macros and their use in Eigen, and a few other CUDA build failures.
2019-05-31 15:26:06 -07:00
Michael Tesch
c5019f722b
Use pade for matrix exponential also for complex values.
2019-05-08 17:04:55 +02:00
Rasmus Larsen
e92486b8c3
Merged in rmlarsen/eigen (pull request PR-643)
...
Make Eigen build with cuda 10 and clang.
Approved-by: Justin Lebar <justin.lebar@gmail.com>
2019-05-20 17:02:39 +00:00
Eugene Zhulenev
01654d97fa
Prevent potential division by zero in TensorExecutor
2019-05-17 14:02:25 -07:00
Eugene Zhulenev
96a276803c
Always evaluate Tensor expressions with broadcasting via tiled evaluation code path
2019-05-16 16:15:45 -07:00
Rasmus Munk Larsen
ab0a30e429
Make Eigen build with cuda 10 and clang.
2019-05-15 13:32:15 -07:00
Rasmus Munk Larsen
e5ac8cbd7a
A) fix deadlocks in thread pool caused by EventCount
...
This fixed 2 deadlocks caused by sloppiness in the EventCount logic.
Both most likely were introduced by cl/236729920 which includes the new EventCount algorithm:
01da8caf00
bug #1 (Prewait):
Prewait must not consume existing signals.
Consider the following scenario.
There are 2 thread pool threads (1 and 2) and 1 external thread (3). RunQueue is empty.
Thread 1 checks the queue, calls Prewait, checks RunQueue again and now is going to call CommitWait.
Thread 2 checks the queue and now is going to call Prewait.
Thread 3 submits 2 tasks, EventCount signals is set to 1 because only 1 waiter is registered the second signal is discarded).
Now thread 2 resumes and calls Prewait and takes away the signal.
Thread 1 resumes and calls CommitWait, there are no pending signals anymore, so it blocks.
As the result we have 2 tasks, but only 1 thread is running.
bug #2 (CancelWait):
CancelWait must not take away a signal if it's not sure that the signal was meant for this thread.
When one thread blocks and another submits a new task concurrently, the EventCount protocol guarantees only the following properties (similar to the Dekker's algorithm):
(a) the registered waiter notices presence of the new task and does not block
(b) the signaler notices presence of the waiters and wakes it
(c) both the waiter notices presence of the new task and signaler notices presence of the waiter
[it's only that both of them do not notice each other must not be possible, because it would lead to a deadlock]
CancelWait is called for cases (a) and (c). For case (c) it is OK to take the notification signal away, but it's not OK for (a) because nobody queued a signals for us and we take away a signal meant for somebody else.
Consider:
Thread 1 calls Prewait, checks RunQueue, it's empty, now it's going to call CommitWait.
Thread 3 submits 2 tasks, EventCount signals is set to 1 because only 1 waiter is registered the second signal is discarded).
Thread 2 calls Prewait, checks RunQueue, discovers the tasks, calls CancelWait and consumes the pending signal (meant for thread 1).
Now Thread 1 resumes and calls CommitWait, since there are no signals it blocks.
As the result we have 2 tasks, but only 1 thread is running.
Both deadlocks are only a problem if the tasks require parallelism. Most computational tasks do not require parallelism, i.e. a single thread will run task 1, finish it and then dequeue and run task 2.
This fix undoes some of the sloppiness in the EventCount that was meant to reduce CPU consumption by idle threads, because we now have more threads running in these corner cases. But we still don't have pthread_yield's and maybe the strictness introduced by this change will actually help to reduce tail latency because we will have threads running when we actually need them running.
B) fix deadlock in thread pool caused by RunQueue
This fixed a deadlock caused by sloppiness in the RunQueue logic.
Most likely this was introduced with the non-blocking thread pool.
The deadlock only affects workloads that require parallelism.
Most computational tasks don't require parallelism.
PopBack must not fail spuriously. If it does, it can effectively lead to single thread consuming several wake up signals.
Consider 2 worker threads are blocked.
External thread submits a task. One of the threads is woken.
It tries to steal the task, but fails due to a spurious failure in PopBack (external thread submits another task and holds the lock).
The thread executes blocking protocol again (it won't block because NonEmptyQueueIndex is precise and the thread will discover pending work, but it has called PrepareWait).
Now external thread submits another task and signals EventCount again.
The signal is consumed by the first thread again. But now we have 2 tasks pending but only 1 worker thread running.
It may be possible to fix this in a different way: make EventCount::CancelWait forward wakeup signal to a blocked thread rather then consuming it. But this looks more complex and I am not 100% that it will fix the bug.
It's also possible to have 2 versions of PopBack: one will do try_to_lock and another won't. Then worker threads could first opportunistically check all queues with try_to_lock, and only use the blocking version before blocking. But let's first fix the bug with the simpler change.
2019-05-08 10:16:46 -07:00
Christoph Hertzberg
e6667a7060
Fix stupid shadow-warnings (with old clang versions)
2019-05-07 18:32:19 +02:00
Christoph Hertzberg
e54dc24d62
Restore C++03 compatibility
2019-05-07 18:30:44 +02:00
Rasmus Larsen
ac50afaffa
Merged in ezhulenev/eigen-01 (pull request PR-633)
...
Check if gpu_assert was overridden in TensorGpuHipCudaDefines
2019-04-29 16:29:35 +00:00
Eugene Zhulenev
01d7e6ee9b
Check if gpu_assert was overridden in TensorGpuHipCudaDefines
2019-04-25 11:19:17 -07:00
Eugene Zhulenev
8ead5bb3d8
Fix doxygen warnings to enable statis code analysis
2019-04-24 12:42:28 -07:00
Rasmus Munk Larsen
144ca33321
Remove deprecation annotation from typedef Eigen::Index Index, as it would generate too many build warnings.
2019-04-24 08:50:07 -07:00
Eugene Zhulenev
a7b7f3ca8a
Add missing EIGEN_DEPRECATED annotations to deprecated functions and fix few other doxygen warnings
2019-04-23 17:23:19 -07:00
Anuj Rawat
8c7a6feb8e
Adding lowlevel APIs for optimized RHS packet load in TensorFlow
...
SpatialConvolution
Low-level APIs are added in order to optimized packet load in gemm_pack_rhs
in TensorFlow SpatialConvolution. The optimization is for scenario when a
packet is split across 2 adjacent columns. In this case we read it as two
'partial' packets and then merge these into 1. Currently this only works for
Packet16f (AVX512) and Packet8f (AVX2). We plan to add this for other
packet types (such as Packet8d) also.
This optimization shows significant speedup in SpatialConvolution with
certain parameters. Some examples are below.
Benchmark parameters are specified as:
Batch size, Input dim, Depth, Num of filters, Filter dim
Speedup numbers are specified for number of threads 1, 2, 4, 8, 16.
AVX512:
Parameters | Speedup (Num of threads: 1, 2, 4, 8, 16)
----------------------------|------------------------------------------
128, 24x24, 3, 64, 5x5 |2.18X, 2.13X, 1.73X, 1.64X, 1.66X
128, 24x24, 1, 64, 8x8 |2.00X, 1.98X, 1.93X, 1.91X, 1.91X
32, 24x24, 3, 64, 5x5 |2.26X, 2.14X, 2.17X, 2.22X, 2.33X
128, 24x24, 3, 64, 3x3 |1.51X, 1.45X, 1.45X, 1.67X, 1.57X
32, 14x14, 24, 64, 5x5 |1.21X, 1.19X, 1.16X, 1.70X, 1.17X
128, 128x128, 3, 96, 11x11 |2.17X, 2.18X, 2.19X, 2.20X, 2.18X
AVX2:
Parameters | Speedup (Num of threads: 1, 2, 4, 8, 16)
----------------------------|------------------------------------------
128, 24x24, 3, 64, 5x5 | 1.66X, 1.65X, 1.61X, 1.56X, 1.49X
32, 24x24, 3, 64, 5x5 | 1.71X, 1.63X, 1.77X, 1.58X, 1.68X
128, 24x24, 1, 64, 5x5 | 1.44X, 1.40X, 1.38X, 1.37X, 1.33X
128, 24x24, 3, 64, 3x3 | 1.68X, 1.63X, 1.58X, 1.56X, 1.62X
128, 128x128, 3, 96, 11x11 | 1.36X, 1.36X, 1.37X, 1.37X, 1.37X
In the higher level benchmark cifar10, we observe a runtime improvement
of around 6% for AVX512 on Intel Skylake server (8 cores).
On lower level PackRhs micro-benchmarks specified in TensorFlow
tensorflow/core/kernels/eigen_spatial_convolutions_test.cc, we observe
the following runtime numbers:
AVX512:
Parameters | Runtime without patch (ns) | Runtime with patch (ns) | Speedup
---------------------------------------------------------------|----------------------------|-------------------------|---------
BM_RHS_NAME(PackRhs, 128, 24, 24, 3, 64, 5, 5, 1, 1, 256, 56) | 41350 | 15073 | 2.74X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 1, 1, 256, 56) | 7277 | 7341 | 0.99X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 2, 2, 256, 56) | 8675 | 8681 | 1.00X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 1, 1, 256, 56) | 24155 | 16079 | 1.50X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 2, 2, 256, 56) | 25052 | 17152 | 1.46X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 1, 1, 256, 56) | 18269 | 18345 | 1.00X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 2, 4, 256, 56) | 19468 | 19872 | 0.98X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 1, 1, 36, 432) | 156060 | 42432 | 3.68X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 2, 2, 36, 432) | 132701 | 36944 | 3.59X
AVX2:
Parameters | Runtime without patch (ns) | Runtime with patch (ns) | Speedup
---------------------------------------------------------------|----------------------------|-------------------------|---------
BM_RHS_NAME(PackRhs, 128, 24, 24, 3, 64, 5, 5, 1, 1, 256, 56) | 26233 | 12393 | 2.12X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 1, 1, 256, 56) | 6091 | 6062 | 1.00X
BM_RHS_NAME(PackRhs, 32, 64, 64, 32, 64, 5, 5, 2, 2, 256, 56) | 7427 | 7408 | 1.00X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 1, 1, 256, 56) | 23453 | 20826 | 1.13X
BM_RHS_NAME(PackRhs, 32, 64, 64, 30, 64, 5, 5, 2, 2, 256, 56) | 23167 | 22091 | 1.09X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 1, 1, 256, 56) | 23422 | 23682 | 0.99X
BM_RHS_NAME(PackRhs, 32, 256, 256, 4, 16, 8, 8, 2, 4, 256, 56) | 23165 | 23663 | 0.98X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 1, 1, 36, 432) | 72689 | 44969 | 1.62X
BM_RHS_NAME(PackRhs, 32, 64, 64, 4, 16, 3, 3, 2, 2, 36, 432) | 61732 | 39779 | 1.55X
All benchmarks on Intel Skylake server with 8 cores.
2019-04-20 06:46:43 +00:00
Rasmus Munk Larsen
039ee52125
Tweak cost model for tensor contraction when parallelizing over the inner dimension.
...
https://bitbucket.org/snippets/rmlarsen/MexxLo
2019-04-12 13:35:10 -07:00
Jonathon Koyle
9a3f06d836
Update TheadPoolDevice example to include ThreadPool creation and passing pointer into constructor.
2019-04-10 10:02:33 -06:00
Deven Desai
66a885b61e
adding EIGEN_DEVICE_FUNC to the recently added TensorContractionKernel constructor. Not having the EIGEN_DEVICE_FUNC attribute on it was leading to compiler errors when compiling Eigen in the ROCm/HIP path
2019-04-08 13:45:08 +00:00
Eugene Zhulenev
629ddebd15
Add missing semicolon
2019-04-02 15:04:26 -07:00
Eugene Zhulenev
4e2f6de1a8
Add support for custom packed Lhs/Rhs blocks in tensor contractions
2019-04-01 11:47:31 -07:00
Deven Desai
2dbea5510f
Merged eigen/eigen into default
2019-03-19 16:52:38 -04:00
David Tellenbach
bd9c2ae3fd
Fix include guard comments
2019-03-15 15:29:17 +01:00
Eugene Zhulenev
001f10e3c9
Fix segfaults with cuda compilation
2019-03-11 09:43:33 -07:00
Eugene Zhulenev
899c16fa2c
Fix a bug in TensorGenerator for 1d tensors
2019-03-11 09:42:01 -07:00
Eugene Zhulenev
0f8bfff23d
Fix a data race in NonBlockingThreadPool
2019-03-11 09:38:44 -07:00
Gael Guennebaud
2df4f00246
Change license from LGPL to MPL2 with agreement from David Harmon.
2019-03-07 18:17:10 +01:00
Rasmus Munk Larsen
3c3f639fe2
Merge.
2019-03-06 11:54:30 -08:00
Rasmus Munk Larsen
f4ec8edea8
Add macro EIGEN_AVOID_THREAD_LOCAL to make it possible to manually disable the use of thread_local.
2019-03-06 11:52:04 -08:00
Rasmus Munk Larsen
41cdc370d0
Fix placement of "#if defined(EIGEN_GPUCC)" guard region.
...
Found with -Wundefined-func-template.
Author: tkoeppe@google.com
2019-03-06 11:42:22 -08:00
Rasmus Munk Larsen
cc407c9d4d
Fix placement of "#if defined(EIGEN_GPUCC)" guard region.
...
Found with -Wundefined-func-template.
Author: tkoeppe@google.com
2019-03-06 11:40:06 -08:00
Eugene Zhulenev
1bc2a0a57c
Add missing return to NonBlockingThreadPool::LocalSteal
2019-03-06 10:49:49 -08:00
Eugene Zhulenev
4e4dcd9026
Remove redundant steal loop
2019-03-06 10:39:07 -08:00
Eugene Zhulenev
25abaa2e41
Check that inner block dimension is continuous
2019-03-05 17:34:35 -08:00
Eugene Zhulenev
5d9a6686ed
Block evaluation for TensorGeneratorOp
2019-03-05 16:35:21 -08:00
Eugene Zhulenev
a407e022e6
Tune tensor contraction threadpool heuristics
2019-03-05 14:19:59 -08:00
Eugene Zhulenev
56c6373f82
Add an extra check for the RunQueue size estimate
2019-03-05 11:51:26 -08:00
Eugene Zhulenev
efb5080d31
Do not initialize invalid fast_strides in TensorGeneratorOp
2019-03-04 16:58:49 -08:00
Eugene Zhulenev
b95941e5c2
Add tiled evaluation for TensorForcedEvalOp
2019-03-04 16:02:22 -08:00
Eugene Zhulenev
694084ecbd
Use fast divisors in TensorGeneratorOp
2019-03-04 11:10:21 -08:00
Rasmus Munk Larsen
cf4a1c81fa
Fix specialization for conjugate on non-complex types in TensorBase.h.
2019-03-01 14:21:09 -08:00
Rasmus Munk Larsen
6560692c67
Improve EventCount used by the non-blocking threadpool.
...
The current algorithm requires threads to commit/cancel waiting in order
they called Prewait. Spinning caused by that serialization can consume
lots of CPU time on some workloads. Restructure the algorithm to not
require that serialization and remove spin waits from Commit/CancelWait.
Note: this reduces max number of threads from 2^16 to 2^14 to leave
more space for ABA counter (which is now 22 bits).
Implementation details are explained in comments.
2019-02-22 13:56:26 -08:00
Gael Guennebaud
9ac1634fdf
Fix conversion warnings
2019-02-19 21:59:53 +01:00
Rasmus Munk Larsen
071629a440
Fix incorrect value of NumDimensions in TensorContraction traits.
...
Reported here: #1671
2019-02-19 10:49:54 -08:00
Rasmus Larsen
efeabee445
Merged in ezhulenev/eigen-01 (pull request PR-590)
...
Do not generate no-op cast() and conjugate() expressions
2019-02-14 21:16:12 +00:00
Eugene Zhulenev
7b837559a7
Fix signed-unsigned return in RuqQueue
2019-02-14 10:40:21 -08:00
Eugene Zhulenev
f0d42d2265
Fix signed-unsigned comparison warning in RunQueue
2019-02-14 10:27:28 -08:00
Eugene Zhulenev
106ba7bb1a
Do not generate no-op cast() and conjugate() expressions
2019-02-14 09:51:51 -08:00
Eugene Zhulenev
8c2f30c790
Speedup Tensor ThreadPool RunQueu::Empty()
2019-02-13 10:20:53 -08:00
Eugene Zhulenev
21eb97d3e0
Add PacketConv implementation for non-vectorizable src expressions
2019-02-08 15:47:25 -08:00
Eugene Zhulenev
1e36166ed1
Optimize TensorConversion evaluator: do not convert same type
2019-02-08 15:13:24 -08:00
Steven Peters
953ca5ba2f
Spline.h: fix spelling "spang" -> "span"
2019-02-08 06:23:24 +00:00
Eugene Zhulenev
59998117bb
Don't do parallel_pack if we can use thread_local memory in tensor contractions
2019-02-07 09:21:25 -08:00
Eugene Zhulenev
8491127082
Do not reduce parallelism too much in contractions with small number of threads
2019-02-04 12:59:33 -08:00
Eugene Zhulenev
eb21bab769
Parallelize tensor contraction only by sharding dimension and use 'thread-local' memory for packing
2019-02-04 10:43:16 -08:00
Gael Guennebaud
d586686924
Workaround lack of support for arbitrary packet-type in Tensor by manually loading half/quarter packets in tensor contraction mapper.
2019-01-30 16:48:01 +01:00
Christoph Hertzberg
a7779a9b42
Hide some annoying unused variable warnings in g++8.1
2019-01-29 16:48:21 +01:00
Christoph Hertzberg
c9825b967e
Renaming even more I
identifiers
2019-01-26 13:22:13 +01:00
Christoph Hertzberg
934b8a1304
Avoid I
as an identifier, since it may clash with the C-header complex.h
2019-01-25 14:54:39 +01:00
Eugene Zhulenev
1e6d15b55b
Fix shorten-64-to-32 warning in TensorContractionThreadPool
2019-01-11 11:41:53 -08:00
Eugene Zhulenev
0abe03764c
Fix shorten-64-to-32 warning in TensorContractionThreadPool
2019-01-10 10:27:55 -08:00
Gael Guennebaud
d812f411c3
bug #1654 : fix compilation with cuda and no c++11
2019-01-09 18:00:05 +01:00
Eugene Zhulenev
e70ffef967
Optimize evalShardedByInnerDim
2019-01-08 16:26:31 -08:00
Rasmus Munk Larsen
dd6d65898a
Fix shorten-64-to-32 warning. Use regular memcpy if num_threads==0.
2018-12-12 14:45:31 -08:00
Gael Guennebaud
cf697272e1
Remove debug code.
2018-12-09 23:05:46 +01:00
Gael Guennebaud
450dc97c6b
Various fixes in polynomial solver and its unit tests:
...
- cleanup noise in imaginary part of real roots
- take into account the magnitude of the derivative to check roots.
- use <= instead of < at appropriate places
2018-12-09 22:54:39 +01:00
Rasmus Munk Larsen
8a02883d58
Merged in markdryan/eigen/avx512-contraction-2 (pull request PR-554)
...
Fix tensor contraction on AVX512 builds
Approved-by: Rasmus Munk Larsen <rmlarsen@google.com>
2018-12-05 18:19:32 +00:00
Mark D Ryan
36f8f6d0be
Fix evalShardedByInnerDim for AVX512 builds
...
evalShardedByInnerDim ensures that the values it passes for start_k and
end_k to evalGemmPartialWithoutOutputKernel are multiples of 8 as the kernel
does not work correctly when the values of k are not multiples of the
packet_size. While this precaution works for AVX builds, it is insufficient
for AVX512 builds where the maximum packet size is 16. The result is slightly
incorrect float32 contractions on AVX512 builds.
This commit fixes the problem by ensuring that k is always a multiple of
the packet_size if the packet_size is > 8.
2018-12-05 12:29:03 +01:00
Christoph Hertzberg
0ec8afde57
Fixed most conversion warnings in MatrixFunctions module
2018-11-20 16:23:28 +01:00
Deven Desai
e7e6809e6b
ROCm/HIP specfic fixes + updates
...
1. Eigen/src/Core/arch/GPU/Half.h
Updating the HIPCC implementation half so that it can declared as a __shared__ variable
2. Eigen/src/Core/util/Macros.h, Eigen/src/Core/util/Memory.h
introducing a EIGEN_USE_STD(func) macro that calls
- std::func be default
- ::func when eigen is being compiled with HIPCC
This change was requested in the previous HIP PR
(https://bitbucket.org/eigen/eigen/pull-requests/518/pr-with-hip-specific-fixes-for-the-eigen/diff )
3. unsupported/Eigen/CXX11/src/Tensor/TensorDeviceThreadPool.h
Removing EIGEN_DEVICE_FUNC attribute from pure virtual methods as it is not supported by HIPCC
4. unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h
Disabling the template specializations of InnerMostDimReducer as they run into HIPCC link errors
2018-11-19 18:13:59 +00:00
Rasmus Munk Larsen
72928a2c8a
Merged in rmlarsen/eigen2 (pull request PR-543)
...
Add parallel memcpy to TensorThreadPoolDevice in Eigen, but limit the number of threads to 4, beyond which we just seem to be wasting CPU cycles as the threads contend for memory bandwidth.
Approved-by: Eugene Zhulenev <ezhulenev@google.com>
2018-11-13 17:10:30 +00:00
Rasmus Munk Larsen
cda479d626
Remove accidental changes.
2018-11-12 18:34:04 -08:00
Rasmus Munk Larsen
719d9aee65
Add parallel memcpy to TensorThreadPoolDevice in Eigen, but limit the number of threads to 4, beyond which we just seem to be wasting CPU cycles as the threads contend for memory bandwidth.
2018-11-12 17:46:02 -08:00
Rasmus Munk Larsen
93f9988a7e
A few small fixes to a) prevent throwing in ctors and dtors of the threading code, and b) supporting matrix exponential on platforms with 113 bits of mantissa for long doubles.
2018-11-09 14:15:32 -08:00
Christoph Hertzberg
449ff74672
Fix most Doxygen warnings. Also add links to stable documentation from unsupported modules (by using the corresponding Doxytags file).
...
Manually grafted from d107a371c6
2018-10-19 21:10:28 +02:00
Rasmus Munk Larsen
dda68f56ec
Fix GPU build due to gpu_assert not always being defined.
2018-10-18 16:29:29 -07:00
Eugene Zhulenev
9e96e91936
Move from rvalue arguments in ThreadPool enqueue* methods
2018-10-16 16:48:32 -07:00
Eugene Zhulenev
217d839816
Reduce thread scheduling overhead in parallelFor
2018-10-16 14:53:06 -07:00
Rasmus Munk Larsen
d52763bb4f
Merged in ezhulenev/eigen-02 (pull request PR-528)
...
[TensorBlockIO] Check if it's allowed to squeeze inner dimensions
Approved-by: Rasmus Munk Larsen <rmlarsen@google.com>
2018-10-16 15:39:40 +00:00
Eugene Zhulenev
900c7c61bb
Check if it's allowed to squueze inner dimensions in TensorBlockIO
2018-10-15 16:52:33 -07:00
Gael Guennebaud
f0fb95135d
Iterative solvers: unify and fix handling of multiple rhs.
...
m_info was not properly computed and the logic was repeated in several places.
2018-10-15 23:47:46 +02:00
Gael Guennebaud
2747b98cfc
DGMRES: fix null rhs, fix restart, fix m_isDeflInitialized for multiple solve
2018-10-15 23:46:00 +02:00
Christoph Hertzberg
3f2c8b7ff0
Fix a lot of Doxygen warnings in Tensor module
2018-10-09 20:22:47 +02:00
Rasmus Munk Larsen
d16634c4d4
Fix out-of bounds access in TensorArgMax.h.
2018-10-08 16:41:36 -07:00
Gael Guennebaud
64b1a15318
Workaround stupid warning
2018-10-08 12:01:18 +02:00
Christoph Hertzberg
b92c71235d
Move struct outside of method for C++03 compatibility.
2018-10-02 18:59:10 +02:00
Christoph Hertzberg
051f9c1aff
Make code compile in C++03 mode again
2018-10-02 18:36:30 +02:00
Christoph Hertzberg
b786ce8c72
Fix conversion warning ... again
2018-10-02 18:35:25 +02:00
Christoph Hertzberg
564ca71e39
Merged in deven-amd/eigen/HIP_fixes (pull request PR-518)
...
PR with HIP specific fixes (for the eigen nightly regression failures in HIP mode)
2018-10-01 16:51:04 +00:00
Deven Desai
94898488a6
This commit contains the following (HIP specific) updates:
...
- unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h
Changing "pass-by-reference" argument to be "pass-by-value" instead
(in a __global__ function decl).
"pass-by-reference" arguments to __global__ functions are unwise,
and will be explicitly flagged as errors by the newer versions of HIP.
- Eigen/src/Core/util/Memory.h
- unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h
Changes introduced in recent commits breaks the HIP compile.
Adding EIGEN_DEVICE_FUNC attribute to some functions and
calling ::malloc/free instead of the corresponding std:: versions
to get the HIP compile working again
- unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h
Change introduced a recent commit breaks the HIP compile
(link stage errors out due to failure to inline a function).
Disabling the recently introduced code (only for HIP compile), to get
the eigen nightly testing going again.
Will submit another PR once we have te proper fix.
- Eigen/src/Core/util/ConfigureVectorization.h
Enabling GPU VECTOR support when HIP compiler is in use
(for both the host and device compile phases)
2018-10-01 14:28:37 +00:00
Rasmus Munk Larsen
2088c0897f
Merged eigen/eigen into default
2018-09-28 16:00:46 -07:00
Rasmus Munk Larsen
31629bb964
Get rid of unused variable warning.
2018-09-28 16:00:09 -07:00
Eugene Zhulenev
bb13d5d917
Fix bug in copy optimization in Tensor slicing.
2018-09-28 14:34:42 -07:00
Rasmus Munk Larsen
104e8fa074
Fix a few warnings and rename a variable to not shadow "last".
2018-09-28 12:00:08 -07:00
Rasmus Munk Larsen
7c1b47840a
Merged in ezhulenev/eigen-01 (pull request PR-514)
...
Add tests for evalShardedByInnerDim contraction + fix bugs
2018-09-28 18:37:54 +00:00
Eugene Zhulenev
524c81f3fa
Add tests for evalShardedByInnerDim contraction + fix bugs
2018-09-28 11:24:08 -07:00
Christoph Hertzberg
86ba50be39
Fix integer conversion warnings
2018-09-28 19:33:39 +02:00
Eugene Zhulenev
e95696acb3
Optimize TensorBlockCopyOp
2018-09-27 14:49:26 -07:00
Eugene Zhulenev
9f33e71e9d
Revert code lost in merge
2018-09-27 12:08:17 -07:00
Eugene Zhulenev
a7a3e9f2b6
Merge with eigen/eigen default
2018-09-27 12:05:06 -07:00
Eugene Zhulenev
9f4988959f
Remove explicit mkldnn support and redundant TensorContractionKernelBlocking
2018-09-27 11:49:19 -07:00
Rasmus Munk Larsen
d956204ab2
Remove "false &&" left over from test.
2018-09-26 17:03:30 -07:00
Rasmus Munk Larsen
3815aeed7a
Parallelize tensor contraction over the inner dimension in cases where where one or both of the outer dimensions (m and n) are small but k is large. This speeds up individual matmul microbenchmarks by up to 85%.
...
Naming below is BM_Matmul_M_K_N_THREADS, measured on a 2-socket Intel Broadwell-based server.
Benchmark Base (ns) New (ns) Improvement
------------------------------------------------------------------
BM_Matmul_1_80_13522_1 387457 396013 -2.2%
BM_Matmul_1_80_13522_2 406487 230789 +43.2%
BM_Matmul_1_80_13522_4 395821 123211 +68.9%
BM_Matmul_1_80_13522_6 391625 97002 +75.2%
BM_Matmul_1_80_13522_8 408986 113828 +72.2%
BM_Matmul_1_80_13522_16 399988 67600 +83.1%
BM_Matmul_1_80_13522_22 411546 60044 +85.4%
BM_Matmul_1_80_13522_32 393528 57312 +85.4%
BM_Matmul_1_80_13522_44 390047 63525 +83.7%
BM_Matmul_1_80_13522_88 387876 63592 +83.6%
BM_Matmul_1_1500_500_1 245359 248119 -1.1%
BM_Matmul_1_1500_500_2 401833 143271 +64.3%
BM_Matmul_1_1500_500_4 210519 100231 +52.4%
BM_Matmul_1_1500_500_6 251582 86575 +65.6%
BM_Matmul_1_1500_500_8 211499 80444 +62.0%
BM_Matmul_3_250_512_1 70297 68551 +2.5%
BM_Matmul_3_250_512_2 70141 52450 +25.2%
BM_Matmul_3_250_512_4 67872 58204 +14.2%
BM_Matmul_3_250_512_6 71378 63340 +11.3%
BM_Matmul_3_250_512_8 69595 41652 +40.2%
BM_Matmul_3_250_512_16 72055 42549 +40.9%
BM_Matmul_3_250_512_22 70158 54023 +23.0%
BM_Matmul_3_250_512_32 71541 56042 +21.7%
BM_Matmul_3_250_512_44 71843 57019 +20.6%
BM_Matmul_3_250_512_88 69951 54045 +22.7%
BM_Matmul_3_1500_512_1 369328 374284 -1.4%
BM_Matmul_3_1500_512_2 428656 223603 +47.8%
BM_Matmul_3_1500_512_4 205599 139508 +32.1%
BM_Matmul_3_1500_512_6 214278 139071 +35.1%
BM_Matmul_3_1500_512_8 184149 142338 +22.7%
BM_Matmul_3_1500_512_16 156462 156983 -0.3%
BM_Matmul_3_1500_512_22 163905 158259 +3.4%
BM_Matmul_3_1500_512_32 155314 157662 -1.5%
BM_Matmul_3_1500_512_44 235434 158657 +32.6%
BM_Matmul_3_1500_512_88 156779 160275 -2.2%
BM_Matmul_1500_4_512_1 363358 349528 +3.8%
BM_Matmul_1500_4_512_2 303134 263319 +13.1%
BM_Matmul_1500_4_512_4 176208 130086 +26.2%
BM_Matmul_1500_4_512_6 148026 115449 +22.0%
BM_Matmul_1500_4_512_8 131656 98421 +25.2%
BM_Matmul_1500_4_512_16 134011 82861 +38.2%
BM_Matmul_1500_4_512_22 134950 85685 +36.5%
BM_Matmul_1500_4_512_32 133165 90081 +32.4%
BM_Matmul_1500_4_512_44 133203 90644 +32.0%
BM_Matmul_1500_4_512_88 134106 100566 +25.0%
BM_Matmul_4_1500_512_1 439243 435058 +1.0%
BM_Matmul_4_1500_512_2 451830 257032 +43.1%
BM_Matmul_4_1500_512_4 276434 164513 +40.5%
BM_Matmul_4_1500_512_6 182542 144827 +20.7%
BM_Matmul_4_1500_512_8 179411 166256 +7.3%
BM_Matmul_4_1500_512_16 158101 155560 +1.6%
BM_Matmul_4_1500_512_22 152435 155448 -1.9%
BM_Matmul_4_1500_512_32 155150 149538 +3.6%
BM_Matmul_4_1500_512_44 193842 149777 +22.7%
BM_Matmul_4_1500_512_88 149544 154468 -3.3%
2018-09-26 16:47:13 -07:00
Eugene Zhulenev
71cd3fbd6a
Support multiple contraction kernel types in TensorContractionThreadPool
2018-09-26 11:08:47 -07:00
Christoph Hertzberg
2c083ace3e
Provide EIGEN_OVERRIDE and EIGEN_FINAL macros to mark virtual function overrides
2018-09-24 18:01:17 +02:00
Gael Guennebaud
c696dbcaa6
Fiw shadowing of last and all
2018-09-21 23:02:33 +02:00
Gael Guennebaud
4291f167ee
Add missing plugins to DynamicSparseMatrix -- fix sparse_extra_3
2018-09-21 14:53:43 +02:00
Rasmus Munk Larsen
8e2be7777e
Merged eigen/eigen into default
2018-09-20 11:41:15 -07:00
Rasmus Munk Larsen
5d2e759329
Initialize BlockIteratorState in a C++03 compatible way.
2018-09-20 11:40:43 -07:00
Gael Guennebaud
e04faca930
merge
2018-09-20 18:33:54 +02:00
Gael Guennebaud
d37188b9c1
Fix MPrealSupport
2018-09-20 18:30:10 +02:00
Gael Guennebaud
3c6dc93f99
Fix GPU support.
2018-09-20 18:29:21 +02:00
Gael Guennebaud
9419f506d0
Fix regression introduced by the previous fix for AVX512.
...
It brokes the complex-complex case on SSE.
2018-09-20 17:32:34 +02:00
Christoph Hertzberg
a0166ab651
Workaround for spurious "array subscript is above array bounds" warnings with g++4.x
2018-09-20 17:08:43 +02:00
Gael Guennebaud
71496b0e25
Fix gebp kernel for real+complex in case only reals are vectorized (e.g., AVX512).
...
This commit also removes "half-packet" from data-mappers: it was not used and conceptually broken anyways.
2018-09-20 17:01:24 +02:00
Rasmus Munk Larsen
44d8274383
Cast to longer type.
2018-09-19 13:31:42 -07:00
Rasmus Munk Larsen
d638b62dda
Silence compiler warning.
2018-09-19 13:27:55 -07:00
Rasmus Munk Larsen
db9c9df59a
Silence more compiler warnings.
2018-09-19 11:50:27 -07:00
Rasmus Munk Larsen
febd09dcc0
Silence compiler warnings in ThreadPoolInterface.h.
2018-09-19 11:11:04 -07:00
luz.paz"
f67b19a884
[PATCH 1/2] Misc. typos
...
From 68d431b4c14ad60a778ee93c1f59ecc4b931950e Mon Sep 17 00:00:00 2001
Found via `codespell -q 3 -I ../eigen-word-whitelist.txt` where the whitelists consists of:
```
als
ans
cas
dum
lastr
lowd
nd
overfl
pres
preverse
substraction
te
uint
whch
```
---
CMakeLists.txt | 26 +++++++++----------
Eigen/src/Core/GenericPacketMath.h | 2 +-
Eigen/src/SparseLU/SparseLU.h | 2 +-
bench/bench_norm.cpp | 2 +-
doc/HiPerformance.dox | 2 +-
doc/QuickStartGuide.dox | 2 +-
.../Eigen/CXX11/src/Tensor/TensorChipping.h | 6 ++---
.../Eigen/CXX11/src/Tensor/TensorDeviceGpu.h | 2 +-
.../src/Tensor/TensorForwardDeclarations.h | 4 +--
.../src/Tensor/TensorGpuHipCudaDefines.h | 2 +-
.../Eigen/CXX11/src/Tensor/TensorReduction.h | 2 +-
.../CXX11/src/Tensor/TensorReductionGpu.h | 2 +-
.../test/cxx11_tensor_concatenation.cpp | 2 +-
unsupported/test/cxx11_tensor_executor.cpp | 2 +-
14 files changed, 29 insertions(+), 29 deletions(-)
2018-09-18 04:15:01 -04:00
Eugene Zhulenev
c4627039ac
Support static dimensions (aka IndexList) in Tensor::resize(...)
2018-09-18 14:25:21 -07:00
Eugene Zhulenev
218a7b9840
Enable DSizes type promotion with c++03 compilers
2018-09-18 10:57:00 -07:00
Ravi Kiran
1f0c941c3d
Collapsed revision
...
* Merged eigen/eigen into default
2018-09-17 18:29:12 -07:00
Rasmus Munk Larsen
03a88c57e1
Merged in ezhulenev/eigen-02 (pull request PR-498)
...
Add DSizes index type promotion
2018-09-17 21:58:38 +00:00
Rasmus Munk Larsen
5ca0e4a245
Merged in ezhulenev/eigen-01 (pull request PR-497)
...
Fix warnings in IndexList array_prod
2018-09-17 20:15:06 +00:00
Eugene Zhulenev
a5cd4e9ad1
Replace deprecated Eigen::DenseIndex with Eigen::Index in TensorIndexList
2018-09-17 10:58:07 -07:00
Gael Guennebaud
b311bfb752
bug #1596 : fix inclusion of Eigen's header within unsupported modules.
2018-09-17 09:54:29 +02:00
Gael Guennebaud
72f19c827a
typo
2018-09-16 22:10:34 +02:00
Eugene Zhulenev
66f056776f
Add DSizes index type promotion
2018-09-15 15:17:38 -07:00
Eugene Zhulenev
f313126dab
Fix warnings in IndexList array_prod
2018-09-15 13:47:54 -07:00
Christoph Hertzberg
42705ba574
Fix weird error for building with g++-4.7 in C++03 mode.
2018-09-15 12:43:41 +02:00
Rasmus Munk Larsen
c2383f95af
Merged in ezhulenev/eigen/fix_dsizes (pull request PR-494)
...
Fix DSizes IndexList constructor
2018-09-15 02:36:19 +00:00
Rasmus Munk Larsen
30290cdd56
Merged in ezhulenev/eigen/moar_eigen_fixes_3 (pull request PR-493)
...
Const cast scalar pointer in TensorSlicingOp evaluator
Approved-by: Sameer Agarwal <sameeragarwal@google.com>
2018-09-15 02:35:07 +00:00
Eugene Zhulenev
f7d0053cf0
Fix DSizes IndexList constructor
2018-09-14 19:19:13 -07:00
Rasmus Munk Larsen
601e289d27
Merged in ezhulenev/eigen/moar_eigen_fixes_1 (pull request PR-492)
...
Explicitly construct tensor block dimensions from evaluator dimensions
2018-09-15 01:36:21 +00:00
Eugene Zhulenev
71070a1e84
Const cast scalar pointer in TensorSlicingOp evaluator
2018-09-14 17:17:50 -07:00
Eugene Zhulenev
4863375723
Explicitly construct tensor block dimensions from evaluator dimensions
2018-09-14 16:55:05 -07:00
Rasmus Munk Larsen
14e35855e1
Merged in chtz/eigen-maxsizevector (pull request PR-490)
...
Let MaxSizeVector respect alignment of objects
Approved-by: Rasmus Munk Larsen <rmlarsen@google.com>
2018-09-14 23:29:24 +00:00
Eugene Zhulenev
1b8d70a22b
Support reshaping with static shapes and dimensions conversion in tensor broadcasting
2018-09-14 15:25:27 -07:00
Christoph Hertzberg
007f165c69
bug #1598 : Let MaxSizeVector respect alignment of objects and add a unit test
...
Also revert 8b3d9ed081
2018-09-14 20:21:56 +02:00
Rasmus Munk Larsen
6313dde390
Fix merge error.
2018-09-13 16:42:05 -07:00
Rasmus Munk Larsen
0db590d22d
Backed out changeset 01197e4452
2018-09-13 16:20:57 -07:00
Rasmus Munk Larsen
b3f4c067d9
Merge
2018-09-13 16:18:52 -07:00
Rasmus Munk Larsen
2b07018140
Enable vectorized version on GPUs. The underlying bug has been fixed.
2018-09-13 16:12:22 -07:00
Rasmus Munk Larsen
53568e3549
Merged in ezhulenev/eigen/tiled_evalution_support (pull request PR-444)
...
Tiled evaluation for Tensor ops
Approved-by: Rasmus Munk Larsen <rmlarsen@google.com>
Approved-by: Gael Guennebaud <g.gael@free.fr>
2018-09-13 22:05:47 +00:00
Eugene Zhulenev
01197e4452
Fix warnings
2018-09-13 15:03:36 -07:00
Gael Guennebaud
7f3b17e403
MSVC 2015 supports c++11 thread-local-storage
2018-09-13 18:15:07 +02:00
Rasmus Munk Larsen
e289f44c56
Don't vectorize the MeanReducer unless pdiv is available.
2018-09-11 14:09:00 -07:00
Eugene Zhulenev
55bb7e7935
Merge with upstream eigen/default
2018-09-11 13:33:06 -07:00
Eugene Zhulenev
81b38a155a
Fix compilation of tiled evaluation code with c++03
2018-09-11 13:32:32 -07:00
Rasmus Munk Larsen
46f88fc454
Use numerically stable tree reduction in TensorReduction.
2018-09-11 10:08:10 -07:00
Deven Desai
c64fe9ea1f
Updates to fix HIP-clang specific compile errors.
...
Compiling the eigen unittests with hip-clang (HIP with clang as the underlying compiler instead of hcc or nvcc), results in compile errors. The changes in this commit fix those compile errors. The main change is to convert a few instances of "__device__" to "EIGEN_DEVICE_FUNC"
2018-08-30 20:22:16 +00:00
Rasmus Munk Larsen
8b3d9ed081
Use padding instead of alignment attribute, which MaxSizeVector does not respect. This leads to undefined behavior and hard-to-trace bugs.
2018-09-05 11:20:06 -07:00
Christoph Hertzberg
ba2c8efdcf
EIGEN_UNUSED is not supported by g++4.7 (and not portable)
2018-09-12 11:49:10 +02:00
Eugene Zhulenev
c144bb355b
Merge with upstream eigen/default
2018-08-27 14:34:07 -07:00
Christoph Hertzberg
b1653d1599
Fix some trivial C++11 vs C++03 compatibility warnings
2018-08-25 12:21:00 +02:00
Christoph Hertzberg
117bc5d505
Fix some shadow warnings
2018-08-25 09:06:08 +02:00
Christoph Hertzberg
5aaedbeced
Fixed more sign-compare and type-limits warnings
2018-08-24 23:54:12 +02:00
Christoph Hertzberg
f7675b826b
Fix several integer conversion and sign-compare warnings
2018-08-24 22:58:55 +02:00
Rasmus Munk Larsen
744e2fe0de
Address comments about EIGEN_THREAD_LOCAL.
2018-08-24 10:24:54 -07:00
Rasmus Munk Larsen
8d9bc5cc02
Fix g++ compilation.
2018-08-23 13:06:39 -07:00
Rasmus Munk Larsen
e9f9d70611
Don't rely on __had_feature for g++.
...
Don't use __thread.
Only use thread_local for gcc 4.8 or newer.
2018-08-23 12:59:46 -07:00
Rasmus Munk Larsen
668690978f
Pad PerThread when we emulate thread_local to prevent false sharing.
2018-08-23 12:54:33 -07:00
Rasmus Munk Larsen
6cedc5a9b3
rename mu.
2018-08-23 12:11:58 -07:00