Commit Graph

1660 Commits

Author SHA1 Message Date
Benoit Steiner
a20b58845f CUDA_ARCH isn't always defined, so avoid relying on it too much when figuring out which implementation to use for reductions. Instead rely on the device to tell us on which hardware version we're running. 2016-08-03 10:00:43 -07:00
Benoit Steiner
fd220dd8b0 Use numext::conj instead of std::conj 2016-08-01 18:16:16 -07:00
Benoit Steiner
e256acec7c Avoid unecessary object copies 2016-08-01 17:03:39 -07:00
Benoit Steiner
2693fd54bf bug #1266: half implementation has been moved to half_impl namespace 2016-07-29 13:45:56 -07:00
Gael Guennebaud
cc2f6d68b1 bug #1264: fix compilation 2016-07-27 23:30:47 +02:00
Gael Guennebaud
8972323c08 Big 1261: add missing max(ADS,ADS) overload (same for min) 2016-07-27 14:52:48 +02:00
Gael Guennebaud
0d7039319c bug #1260: remove doubtful specializations of ScalarBinaryOpTraits 2016-07-27 14:35:52 +02:00
Benoit Steiner
3d3d34e442 Deleted dead code. 2016-07-25 08:53:37 -07:00
Gael Guennebaud
6d5daf32f5 bug #1255: comment out broken and unsused line. 2016-07-25 14:48:30 +02:00
Gael Guennebaud
f9598d73b5 bug #1250: fix pow() for AutoDiffScalar with custom nested scalar type. 2016-07-25 14:42:19 +02:00
Gael Guennebaud
fd1117f2be Implement digits10 for mpreal 2016-07-25 14:38:55 +02:00
Gael Guennebaud
9908020d36 Add minimal support for Array<string>, and fix Tensor<string> 2016-07-25 14:25:56 +02:00
Benoit Steiner
c6b0de2c21 Improved partial reductions in more cases 2016-07-22 17:18:20 -07:00
Gael Guennebaud
0f350a8b7e Fix CUDA compilation 2016-07-21 18:47:07 +02:00
Yi Lin
7b4abc2b1d Fixed a code comment error 2016-07-20 22:28:54 +08:00
Benoit Steiner
20f7ef2f89 An evalTo expression is only aligned iff both the lhs and the rhs are aligned. 2016-07-12 10:56:42 -07:00
Benoit Steiner
3a2dd352ae Improved the contraction mapper to properly support tensor products 2016-07-11 13:43:41 -07:00
Benoit Steiner
0bc020be9d Improved the detection of packet size in the tensor scan evaluator. 2016-07-11 12:14:56 -07:00
Gael Guennebaud
a96a7ce3f7 Move CUDA's special functions to SpecialFunctions module. 2016-07-11 18:39:11 +02:00
Gael Guennebaud
fd60966310 merge 2016-07-11 18:11:47 +02:00
Gael Guennebaud
194daa3048 Fix assertion (it did not make sense for static_val types) 2016-07-11 11:39:27 +02:00
Gael Guennebaud
18c35747ce Emulate _BitScanReverse64 for 32 bits builds 2016-07-11 11:38:04 +02:00
Gael Guennebaud
599f8ba617 Change runtime to compile-time conditional. 2016-07-08 11:39:43 +02:00
Gael Guennebaud
544935101a Fix warnings 2016-07-08 11:38:52 +02:00
Gael Guennebaud
2f7e2614e7 bug #1232: refactor special functions as a new SpecialFunctions module, currently in unsupported/. 2016-07-08 11:13:55 +02:00
Gael Guennebaud
179ebb88f9 Fix warning 2016-07-07 09:16:40 +02:00
Gael Guennebaud
ce9fc0ce14 fix clang compilation 2016-07-04 12:59:02 +02:00
Gael Guennebaud
440020474c Workaround compilation issue with msvc 2016-07-04 12:49:19 +02:00
Igor Babuschkin
78f37ca03c Expose real and imag methods on Tensors 2016-07-01 17:34:31 +01:00
Benoit Steiner
cb2d8b8fa6 Made it possible to compile reductions for an old cuda architecture and run them on a recent gpu. 2016-06-29 15:42:01 -07:00
Benoit Steiner
b2a47641ce Made the code compile when using CUDA architecture < 300 2016-06-29 15:32:47 -07:00
Igor Babuschkin
85699850d9 Add missing CUDA kernel to tensor scan op
The TensorScanOp implementation was missing a CUDA kernel launch.
This adds a simple placeholder implementation.
2016-06-29 11:54:35 +01:00
Benoit Steiner
75c333f94c Don't store the scan axis in the evaluator of the tensor scan operation since it's only used in the constructor.
Also avoid taking references to values that may becomes stale after a copy construction.
2016-06-27 10:32:38 -07:00
Benoit Steiner
7944d4431f Made the cost model cwiseMax and cwiseMin methods consts to help the PowerPC cuda compiler compile this code. 2016-08-18 13:46:36 -07:00
Benoit Steiner
647a51b426 Force the inlining of a simple accessor. 2016-08-18 12:31:02 -07:00
Benoit Steiner
a452dedb4f Merged in ibab/eigen/double-tensor-reduction (pull request PR-216)
Enable efficient Tensor reduction for doubles on the GPU (continued)
2016-08-18 12:29:54 -07:00
Igor Babuschkin
18c67df31c Fix remaining CUDA >= 300 checks 2016-08-18 17:18:30 +01:00
Igor Babuschkin
1569a7d7ab Add the necessary CUDA >= 300 checks back 2016-08-18 17:15:12 +01:00
Benoit Steiner
2b17f34574 Properly detect the type of the result of a contraction. 2016-08-16 16:00:30 -07:00
Igor Babuschkin
841e075154 Remove CUDA >= 300 checks and enable outer reductin for doubles 2016-08-06 18:07:50 +01:00
Igor Babuschkin
0425118e2a Merge upstream changes 2016-08-05 14:34:57 +01:00
Igor Babuschkin
9537e8b118 Make use of atomicExch for atomicExchCustom 2016-08-05 14:29:58 +01:00
Igor Babuschkin
eeb0d880ee Enable efficient Tensor reduction for doubles 2016-07-01 19:08:26 +01:00
Gael Guennebaud
cfff370549 Fix hyperbolic functions for autodiff. 2016-06-24 23:21:35 +02:00
Gael Guennebaud
3852351793 merge pull request 198 2016-06-24 11:48:17 +02:00
Gael Guennebaud
6dd9077070 Fix some unused typedef warnings. 2016-06-24 11:34:21 +02:00
Gael Guennebaud
ce90647fa5 Fix NumTraits<AutoDiff> 2016-06-24 11:34:02 +02:00
Gael Guennebaud
fa39f81b48 Fix instantiation of ScalarBinaryOpTraits for AutoDiff. 2016-06-24 11:33:30 +02:00
Rasmus Munk Larsen
a9c1e4d7b7 Return -1 from CurrentThreadId when called by thread outside the pool. 2016-06-23 16:40:07 -07:00
Rasmus Munk Larsen
d39df320d2 Resolve merge. 2016-06-23 15:08:03 -07:00
Gael Guennebaud
360a743a10 bug #1241: does not emmit anything for empty tensors 2016-06-23 18:47:31 +02:00
Gael Guennebaud
7c6561485a merge PR 194 2016-06-23 15:29:57 +02:00
Benoit Steiner
a29a2cb4ff Silenced a couple of compilation warnings generated by xcode 2016-06-22 16:43:02 -07:00
Benoit Steiner
f8fcd6b32d Turned the constructor of the PerThread struct into what is effectively a constant expression to make the code compatible with a wider range of compilers 2016-06-22 16:03:11 -07:00
Benoit Steiner
c58df31747 Handle empty tensors in the print functions 2016-06-21 09:22:43 -07:00
Benoit Steiner
de32f8d656 Fixed the printing of rank-0 tensors 2016-06-20 10:46:45 -07:00
Tal Hadad
8e198d6835 Complete docs and add ostream operator for EulerAngles. 2016-06-19 20:42:45 +03:00
Geoffrey Lalonde
72c95383e0 Add autodiff coverage for standard library hyperbolic functions, and tests.
* * *
Corrected tanh derivatived, moved test definitions.
* * *
Added more test cases, removed lingering lines
2016-06-15 23:33:19 -07:00
Benoit Steiner
7d495d890a Merged in ibab/eigen (pull request PR-197)
Implement exclusive scan option for Tensor library
2016-06-14 17:54:59 -07:00
Benoit Steiner
aedc5be1d6 Avoid generating pseudo random numbers that are multiple of 5: this helps
spread the load over multiple cpus without havind to rely on work stealing.
2016-06-14 17:51:47 -07:00
Igor Babuschkin
c4d10e921f Implement exclusive scan option 2016-06-14 19:44:07 +01:00
Gael Guennebaud
76236cdea4 merge 2016-06-14 15:33:47 +02:00
Gael Guennebaud
62134082aa Update AutoDiffScalar wrt to scalar-multiple. 2016-06-14 15:06:35 +02:00
Gael Guennebaud
5d38203735 Update Tensor module to use bind1st_op and bind2nd_op 2016-06-14 15:06:03 +02:00
Tal Hadad
6edfe8771b Little bit docs 2016-06-13 22:03:19 +03:00
Tal Hadad
6e1c086593 Add static assertion 2016-06-13 21:55:17 +03:00
Gael Guennebaud
3c12e24164 Add bind1st_op and bind2nd_op helpers to turn binary functors into unary ones, and implement scalar_multiple2 and scalar_quotient2 on top of them. 2016-06-13 16:18:59 +02:00
Tal Hadad
06206482d9 More docs, and minor code fixes 2016-06-12 23:40:17 +03:00
Benoit Steiner
65d33e5898 Merged in ibab/eigen (pull request PR-195)
Add small fixes to TensorScanOp
2016-06-10 19:31:17 -07:00
Benoit Steiner
a05607875a Don't refer to the half2 type unless it's been defined 2016-06-10 11:53:56 -07:00
Igor Babuschkin
86aedc9282 Add small fixes to TensorScanOp 2016-06-07 20:06:38 +01:00
Benoit Steiner
84b2060a9e Fixed compilation error with gcc 4.4 2016-06-06 17:16:19 -07:00
Benoit Steiner
7ef9f47b58 Misc small improvements to the reduction code. 2016-06-06 14:09:46 -07:00
Tal Hadad
e30133e439 Doc EulerAngles class, and minor fixes. 2016-06-06 22:01:40 +03:00
Benoit Steiner
9137f560f0 Moved assertions to the constructor to make the code more portable 2016-06-06 07:26:48 -07:00
Gael Guennebaud
66e99ab6a1 Relax mixing-type constraints for binary coefficient-wise operators:
- Replace internal::scalar_product_traits<A,B> by Eigen::ScalarBinaryOpTraits<A,B,OP>
- Remove the "functor_is_product_like" helper (was pretty ugly)
- Currently, OP is not used, but it is available to the user for fine grained tuning
- Currently, only the following operators have been generalized: *,/,+,-,=,*=,/=,+=,-=
- TODO: generalize all other binray operators (comparisons,pow,etc.)
- TODO: handle "scalar op array" operators (currently only * is handled)
- TODO: move the handling of the "void" scalar type to ScalarBinaryOpTraits
2016-06-06 15:11:41 +02:00
Rasmus Munk Larsen
f1f2ff8208 size_t -> int 2016-06-03 18:06:37 -07:00
Rasmus Munk Larsen
76308e7fd2 Add CurrentThreadId and NumThreads methods to Eigen threadpools and TensorDeviceThreadPool. 2016-06-03 16:28:58 -07:00
Benoit Steiner
37638dafd7 Simplified the code that dispatches vectorized reductions on GPU 2016-06-09 10:29:52 -07:00
Benoit Steiner
66796e843d Fixed definition of some of the reducer_traits 2016-06-09 08:50:01 -07:00
Benoit Steiner
14a112ee15 Use signed integers more consistently to encode the number of threads to use to evaluate a tensor expression. 2016-06-09 08:25:22 -07:00
Benoit Steiner
8f92c26319 Improved code formatting 2016-06-09 08:23:42 -07:00
Benoit Steiner
aa33446dac Improved support for vectorization of 16-bit floats 2016-06-09 08:22:27 -07:00
Benoit Steiner
d6d39c7ddb Added missing EIGEN_DEVICE_FUNC 2016-06-07 14:35:08 -07:00
Gael Guennebaud
e8b922ca63 Fix MatrixFunctions module. 2016-06-03 09:21:35 +02:00
Benoit Steiner
c3c8ad8046 Align the first element of the Waiter struct instead of padding it. This reduces its memory footprint a bit while achieving the goal of preventing false sharing 2016-06-02 21:17:41 -07:00
Eugene Brevdo
39baff850c Add TernaryFunctors and the betainc SpecialFunction.
TernaryFunctors and their executors allow operations on 3-tuples of inputs.
API fully implemented for Arrays and Tensors based on binary functors.

Ported the cephes betainc function (regularized incomplete beta
integral) to Eigen, with support for CPU and GPU, floats, doubles, and
half types.

Added unit tests in array.cpp and cxx11_tensor_cuda.cu


Collapsed revision
* Merged helper methods for betainc across floats and doubles.
* Added TensorGlobalFunctions with betainc().  Removed betainc() from TensorBase.
* Clean up CwiseTernaryOp checks, change igamma_helper to cephes_helper.
* betainc: merge incbcf and incbd into incbeta_cfe.  and more cleanup.
* Update TernaryOp and SpecialFunctions (betainc) based on review comments.
2016-06-02 17:04:19 -07:00
Benoit Steiner
c21eaedce6 Use array_prod to compute the number of elements contained in the input tensor expression 2016-06-04 07:47:04 -07:00
Benoit Steiner
36a4500822 Merged in ibab/eigen (pull request PR-192)
Add generic scan method
2016-06-03 17:28:33 -07:00
Benoit Steiner
c2a102345f Improved the performance of full reductions.
AFTER:
BM_fullReduction/10        4541       4543     154017  21.0M items/s
BM_fullReduction/64        5191       5193     100000  752.5M items/s
BM_fullReduction/512       9588       9588      71361  25.5G items/s
BM_fullReduction/4k      244314     244281       2863  64.0G items/s
BM_fullReduction/5k      359382     359363       1946  64.8G items/s

BEFORE:
BM_fullReduction/10        9085       9087      74395  10.5M items/s
BM_fullReduction/64        9478       9478      72014  412.1M items/s
BM_fullReduction/512      14643      14646      46902  16.7G items/s
BM_fullReduction/4k      260338     260384       2678  60.0G items/s
BM_fullReduction/5k      385076     385178       1818  60.5G items/s
2016-06-03 17:27:08 -07:00
Igor Babuschkin
dc03b8f3a1 Add generic scan method 2016-06-03 17:37:04 +01:00
Rasmus Munk Larsen
811aadbe00 Add syntactic sugar to Eigen tensors to allow more natural syntax.
Specifically, this enables expressions involving:

scalar + tensor
scalar * tensor
scalar / tensor
scalar - tensor
2016-06-02 12:41:28 -07:00
Tal Hadad
52e4cbf539 Merged eigen/eigen into default 2016-06-02 22:15:20 +03:00
Tal Hadad
2aaaf22623 Fix Gael reports (except documention)
- "Scalar angle(int) const"  should be  "const Vector& angles() const"
- then method "coeffs" could be removed.
- avoid one letter names like h, p, r -> use alpha(), beta(), gamma() ;)
- about the "fromRotation" methods:
 - replace the ones which are not static by operator= (as in Quaternion)
 - the others are actually static methods: use a capital F: FromRotation
- method "invert" should be removed.
- use a macro to define both float and double EulerAnglesXYZ* typedefs
- AddConstIf -> not used
- no needs for NegateIfXor, compilers are extremely good at optimizing away branches based on compile time constants:
  if(IsHeadingOpposite-=IsEven) res.alpha() = -res.alpha();
2016-06-02 22:12:57 +03:00
Igor Babuschkin
fbd7ed6ff7 Add tensor scan op
This is the initial implementation a generic scan operation.
Based on this, cumsum and cumprod method have been added to TensorBase.
2016-06-02 13:35:47 +01:00
Benoit Steiner
0ed08fd281 Use a single PacketSize variable 2016-06-01 21:19:05 -07:00
Benoit Steiner
8f6fedc55f Fixed compilation warning 2016-06-01 21:14:46 -07:00
Benoit Steiner
873e6ac54b Silenced compilation warning generated by nvcc. 2016-06-01 14:20:50 -07:00
Benoit Steiner
d27b0ad4c8 Added support for mean reductions on fp16 2016-06-01 11:12:07 -07:00
Benoit Steiner
5aeb3687c4 Only enable optimized reductions of fp16 if the reduction functor supports them 2016-05-31 10:33:40 -07:00
Benoit Steiner
e2946d962d Reimplement clamp as a static function. 2016-05-27 12:58:43 -07:00
Benoit Steiner
e96d36d4cd Use NULL instead of nullptr to preserve the compatibility with cxx03 2016-05-27 12:54:06 -07:00
Benoit Steiner
abc815798b Added a new operation to enable more powerful tensorindexing. 2016-05-27 12:22:25 -07:00
Gael Guennebaud
22a035db95 Fix compilation when defaulting to row-major 2016-05-27 10:31:11 +02:00
Benoit Steiner
1ae2567861 Fixed some compilation warnings 2016-05-26 15:57:19 -07:00
Benoit Steiner
1a47844529 Preserve the ability to vectorize the evaluation of an expression even when it involves a cast that isn't vectorized (e.g fp16 to float) 2016-05-26 14:37:09 -07:00
Benoit Steiner
36369ab63c Resolved merge conflicts 2016-05-26 13:39:39 -07:00
Benoit Steiner
28fcb5ca2a Merged latest reduction improvements 2016-05-26 12:19:33 -07:00
Benoit Steiner
c1c7f06c35 Improved the performance of inner reductions. 2016-05-26 11:53:59 -07:00
Benoit Steiner
8288b0aec2 Code cleanup. 2016-05-26 09:00:04 -07:00
Benoit Steiner
2d7ed54ba2 Made the static storage class qualifier come first. 2016-05-25 22:16:15 -07:00
Benoit Steiner
e1fca8866e Deleted unnecessary explicit qualifiers. 2016-05-25 22:15:26 -07:00
Benoit Steiner
9b0aaf5113 Don't mark inline functions as static since it confuses the ICC compiler 2016-05-25 22:10:11 -07:00
Benoit Steiner
037a463fd5 Marked unused variables as such 2016-05-25 22:07:48 -07:00
Benoit Steiner
3ac4045272 Made the IndexPair code compile in non cxx11 mode 2016-05-25 15:15:12 -07:00
Benoit Steiner
66556d0e05 Made the index pair list code more portable accross various compilers 2016-05-25 14:34:27 -07:00
Benoit Steiner
034aa3b2c0 Improved the performance of tensor padding 2016-05-25 11:43:08 -07:00
Benoit Steiner
58026905ae Added support for statically known lists of pairs of indices 2016-05-25 11:04:14 -07:00
Benoit Steiner
0835667329 There is no need to make the fp16 full reduction kernel a static function. 2016-05-24 23:11:56 -07:00
Benoit Steiner
b5d6b52a4d Fixed compilation warning 2016-05-24 23:10:57 -07:00
Benoit Steiner
a09cbf9905 Merged in rmlarsen/eigen (pull request PR-188)
Minor cleanups: 1. Get rid of a few unused variables. 2. Get rid of last uses of EIGEN_USE_COST_MODEL.
2016-05-23 12:55:12 -07:00
Christoph Hertzberg
718521d5cf Silenced several double-promotion warnings 2016-05-22 18:17:04 +02:00
Christoph Hertzberg
25a03c02d6 Fix some sign-compare warnings 2016-05-22 16:42:27 +02:00
Gael Guennebaud
ccaace03c9 Make EIGEN_HAS_CONSTEXPR user configurable 2016-05-20 15:10:08 +02:00
Gael Guennebaud
c3410804cd Make EIGEN_HAS_VARIADIC_TEMPLATES user configurable 2016-05-20 15:05:38 +02:00
Gael Guennebaud
48bf5ec216 Make EIGEN_HAS_RVALUE_REFERENCES user configurable 2016-05-20 14:54:20 +02:00
Gael Guennebaud
f43ae88892 Rename EIGEN_HAVE_RVALUE_REFERENCES to EIGEN_HAS_RVALUE_REFERENCES 2016-05-20 14:48:51 +02:00
Gael Guennebaud
2f656ce447 Remove std:: to enable custom scalar types. 2016-05-19 23:13:47 +02:00
Rasmus Larsen
b1e080c752 Merged eigen/eigen into default 2016-05-18 15:21:50 -07:00
Rasmus Munk Larsen
5624219b6b Merge. 2016-05-18 15:16:06 -07:00
Rasmus Munk Larsen
7df811cfe5 Minor cleanups: 1. Get rid of unused variables. 2. Get rid of last uses of EIGEN_USE_COST_MODEL. 2016-05-18 15:09:48 -07:00
Benoit Steiner
bb3ff8e9d9 Advertize the packet api of the tensor reducers iff the corresponding packet primitives are available. 2016-05-18 14:52:49 -07:00
Gael Guennebaud
548a487800 bug #1229: bypass usage of Derived::Options which is available for plain matrix types only. Better use column-major storage anyway. 2016-05-18 16:44:05 +02:00
Gael Guennebaud
43790e009b Pass argument by const ref instead of by value in pow(AutoDiffScalar...) 2016-05-18 16:28:02 +02:00
Gael Guennebaud
1fbfab27a9 bug #1223: fix compilation of AutoDiffScalar's min/max operators, and add regression unit test. 2016-05-18 16:26:26 +02:00
Gael Guennebaud
448d9d943c bug #1222: fix compilation in AutoDiffScalar and add respective unit test 2016-05-18 16:00:11 +02:00
Rasmus Munk Larsen
f519fca72b Reduce overhead for small tensors and cheap ops by short-circuiting the const computation and block size calculation in parallelFor. 2016-05-17 16:06:00 -07:00
Benoit Steiner
86ae94462e #if defined(EIGEN_USE_NONBLOCKING_THREAD_POOL) is now #if !defined(EIGEN_USE_SIMPLE_THREAD_POOL): the non blocking thread pool is the default since it's more scalable, and one needs to request the old thread pool explicitly. 2016-05-17 14:06:15 -07:00
Benoit Steiner
997c335970 Fixed compilation error 2016-05-17 12:54:18 -07:00
Benoit Steiner
ebf6ada5ee Fixed compilation error in the tensor thread pool 2016-05-17 12:33:46 -07:00
Rasmus Munk Larsen
0bb61b04ca Merge upstream. 2016-05-17 10:26:10 -07:00
Rasmus Munk Larsen
0dbd68145f Roll back changes to core. Move include of TensorFunctors.h up to satisfy dependence in TensorCostModel.h. 2016-05-17 10:25:19 -07:00
Rasmus Larsen
00228f2506 Merged eigen/eigen into default 2016-05-17 09:49:31 -07:00
Benoit Steiner
e7e64c3277 Enable the use of the packet api to evaluate tensor broadcasts. This speed things up quite a bit:
Before"
M_broadcasting/10        500000       3690    27.10 MFlops/s
BM_broadcasting/80        500000       4014  1594.24 MFlops/s
BM_broadcasting/640       100000      14770 27731.35 MFlops/s
BM_broadcasting/4K          5000     632711 39512.48 MFlops/s
After:
BM_broadcasting/10        500000       4287    23.33 MFlops/s
BM_broadcasting/80        500000       4455  1436.41 MFlops/s
BM_broadcasting/640       200000      10195 40173.01 MFlops/s
BM_broadcasting/4K          5000     423746 58997.57 MFlops/s
2016-05-17 09:24:35 -07:00
Benoit Steiner
5fa27574dd Allow vectorized padding on GPU. This helps speed things up a little
Before:
BM_padding/10            5000000        460   217.03 MFlops/s
BM_padding/80            5000000        460 13899.40 MFlops/s
BM_padding/640           5000000        461 888421.17 MFlops/s
BM_padding/4K            5000000        460 54316322.55 MFlops/s
After:
BM_padding/10            5000000        454   220.20 MFlops/s
BM_padding/80            5000000        455 14039.86 MFlops/s
BM_padding/640           5000000        452 904968.83 MFlops/s
BM_padding/4K            5000000        411 60750049.21 MFlops/s
2016-05-17 09:17:26 -07:00
Benoit Steiner
8d06c02ffd Allow vectorized padding on GPU. This helps speed things up a little.
Before:
BM_padding/10            5000000        460   217.03 MFlops/s
BM_padding/80            5000000        460 13899.40 MFlops/s
BM_padding/640           5000000        461 888421.17 MFlops/s
BM_padding/4K            5000000        460 54316322.55 MFlops/s
After:
BM_padding/10            5000000        454   220.20 MFlops/s
BM_padding/80            5000000        455 14039.86 MFlops/s
BM_padding/640           5000000        452 904968.83 MFlops/s
BM_padding/4K            5000000        411 60750049.21 MFlops/s
2016-05-17 09:13:27 -07:00
David Dement
ccc7563ac5 made a fix to the GMRES solver so that it now correctly reports the error achieved in the solution process 2016-05-16 14:26:41 -04:00
Benoit Steiner
a80d875916 Added missing costPerCoeff method 2016-05-16 09:31:10 -07:00
Benoit Steiner
83ef39e055 Turn on the cost model by default. This results in some significant speedups for smaller tensors. For example, below are the results for the various tensor reductions.
Before:
BM_colReduction_12T/10       1000000       1949    51.29 MFlops/s
BM_colReduction_12T/80        100000      15636   409.29 MFlops/s
BM_colReduction_12T/640        20000      95100  4307.01 MFlops/s
BM_colReduction_12T/4K           500    4573423  5466.36 MFlops/s
BM_colReduction_4T/10        1000000       1867    53.56 MFlops/s
BM_colReduction_4T/80         500000       5288  1210.11 MFlops/s
BM_colReduction_4T/640         10000     106924  3830.75 MFlops/s
BM_colReduction_4T/4K            500    9946374  2513.48 MFlops/s
BM_colReduction_8T/10        1000000       1912    52.30 MFlops/s
BM_colReduction_8T/80         200000       8354   766.09 MFlops/s
BM_colReduction_8T/640         20000      85063  4815.22 MFlops/s
BM_colReduction_8T/4K            500    5445216  4591.19 MFlops/s
BM_rowReduction_12T/10       1000000       2041    48.99 MFlops/s
BM_rowReduction_12T/80        100000      15426   414.87 MFlops/s
BM_rowReduction_12T/640        50000      39117 10470.98 MFlops/s
BM_rowReduction_12T/4K           500    3034298  8239.14 MFlops/s
BM_rowReduction_4T/10        1000000       1834    54.51 MFlops/s
BM_rowReduction_4T/80         500000       5406  1183.81 MFlops/s
BM_rowReduction_4T/640         50000      35017 11697.16 MFlops/s
BM_rowReduction_4T/4K            500    3428527  7291.76 MFlops/s
BM_rowReduction_8T/10        1000000       1925    51.95 MFlops/s
BM_rowReduction_8T/80         200000       8519   751.23 MFlops/s
BM_rowReduction_8T/640         50000      33441 12248.42 MFlops/s
BM_rowReduction_8T/4K           1000    2852841  8763.19 MFlops/s


After:
BM_colReduction_12T/10      50000000         59  1678.30 MFlops/s
BM_colReduction_12T/80       5000000        725  8822.71 MFlops/s
BM_colReduction_12T/640        20000      90882  4506.93 MFlops/s
BM_colReduction_12T/4K           500    4668855  5354.63 MFlops/s
BM_colReduction_4T/10       50000000         59  1687.37 MFlops/s
BM_colReduction_4T/80        5000000        737  8681.24 MFlops/s
BM_colReduction_4T/640         50000     108637  3770.34 MFlops/s
BM_colReduction_4T/4K            500    7912954  3159.38 MFlops/s
BM_colReduction_8T/10       50000000         60  1657.21 MFlops/s
BM_colReduction_8T/80        5000000        726  8812.48 MFlops/s
BM_colReduction_8T/640         20000      91451  4478.90 MFlops/s
BM_colReduction_8T/4K            500    5441692  4594.16 MFlops/s
BM_rowReduction_12T/10      20000000         93  1065.28 MFlops/s
BM_rowReduction_12T/80       2000000        950  6730.96 MFlops/s
BM_rowReduction_12T/640        50000      38196 10723.48 MFlops/s
BM_rowReduction_12T/4K           500    3019217  8280.29 MFlops/s
BM_rowReduction_4T/10       20000000         93  1064.30 MFlops/s
BM_rowReduction_4T/80        2000000        959  6667.71 MFlops/s
BM_rowReduction_4T/640         50000      37433 10941.96 MFlops/s
BM_rowReduction_4T/4K            500    3036476  8233.23 MFlops/s
BM_rowReduction_8T/10       20000000         93  1072.47 MFlops/s
BM_rowReduction_8T/80        2000000        959  6670.04 MFlops/s
BM_rowReduction_8T/640         50000      38069 10759.37 MFlops/s
BM_rowReduction_8T/4K           1000    2758988  9061.29 MFlops/s
2016-05-16 08:55:21 -07:00
Benoit Steiner
b789a26804 Fixed syntax error 2016-05-16 08:51:08 -07:00