Commit Graph

10522 Commits

Author SHA1 Message Date
Matthieu Vigne
8d7a73e48e bug #1617: Fix SolveTriangular.solveInPlace crashing for empty matrix.
This made FullPivLU.kernel() crash when used on the zero matrix.
Add unit test for FullPivLU.kernel() on the zero matrix.
2018-10-31 20:28:18 +01:00
Christoph Hertzberg
66b28e290d bug #1618: Use different power-of-2 check to avoid MSVC warning 2018-11-01 13:23:19 +01:00
Rasmus Munk Larsen
07fcdd1438 Merged in ezhulenev/eigen-02 (pull request PR-534)
Fix cxx11_tensor_{block_access, reduction} tests
2018-10-25 18:34:35 +00:00
Eugene Zhulenev
8a977c1f46 Fix cxx11_tensor_{block_access, reduction} tests 2018-10-25 11:31:29 -07:00
Halie Murray-Davis
fb62d6d96e Fix typo in tutorial documentation. 2018-10-25 04:55:34 +00:00
Christoph Hertzberg
b5f077d22c Document EIGEN_NO_IO preprocessor directive 2018-10-25 16:49:25 +02:00
Christian von Schultz
4a40b3785d Collapsed revision (based on pull request PR-325)
* Support compiling without IO streams

Add the preprocessor definition EIGEN_NO_IO which, if defined,
disables all use of the IO streams part of the standard library.
2018-10-22 21:14:40 +02:00
Rasmus Munk Larsen
14054e217f Do not rely on the compiler generating __device__ functions for constexpr in Cuda (via EIGEN_CONSTEXPR_ARE_DEVICE_FUNC. This breaks several target in the TensorFlow Cuda build, e.g.,
INFO: From Compiling tensorflow/core/kernels/maxpooling_op_gpu.cu.cc:
/b/f/w/run/external/eigen_archive/Eigen/src/Core/arch/GPU/Half.h(197): error: calling a __host__ function("std::equal_to<float> ::operator () const") from a __global__ function("tensorflow::_NV_ANON_NAMESPACE::MaxPoolGradBackwardNoMaskNHWC< ::Eigen::half> ") is not allowed

/b/f/w/run/external/eigen_archive/Eigen/src/Core/arch/GPU/Half.h(197): error: identifier "std::equal_to<float> ::operator () const" is undefined in device code"

/b/f/w/run/external/eigen_archive/Eigen/src/Core/arch/GPU/Half.h(197): error: calling a __host__ function("std::equal_to<float> ::operator () const") from a __global__ function("tensorflow::_NV_ANON_NAMESPACE::MaxPoolGradBackwardNoMaskNCHW< ::Eigen::half> ") is not allowed

/b/f/w/run/external/eigen_archive/Eigen/src/Core/arch/GPU/Half.h(197): error: identifier "std::equal_to<float> ::operator () const" is undefined in device code

4 errors detected in the compilation of "/tmp/tmpxft_00000011_00000000-6_maxpooling_op_gpu.cu.cpp1.ii".
ERROR: /tmpfs/tensor_flow/tensorflow/core/kernels/BUILD:3753:1: output 'tensorflow/core/kernels/_objs/pooling_ops_gpu/maxpooling_op_gpu.cu.pic.o' was not created
ERROR: /tmpfs/tensor_flow/tensorflow/core/kernels/BUILD:3753:1: Couldn't build file tensorflow/core/kernels/_objs/pooling_ops_gpu/maxpooling_op_gpu.cu.pic.o: not all outputs were created or valid
2018-10-22 16:18:24 -07:00
Rasmus Munk Larsen
954b4ca9d0 Suppress compiler warning about unused global variable. 2018-10-22 13:48:56 -07:00
Rasmus Munk Larsen
9caafca550 Merged in rmlarsen/eigen (pull request PR-532)
Only set EIGEN_CONSTEXPR_ARE_DEVICE_FUNC for clang++ if cxx_relaxed_constexpr is available.
2018-10-19 21:37:14 +00:00
Christoph Hertzberg
449ff74672 Fix most Doxygen warnings. Also add links to stable documentation from unsupported modules (by using the corresponding Doxytags file).
Manually grafted from d107a371c6
2018-10-19 21:10:28 +02:00
Rasmus Munk Larsen
39fec15d5c Merged eigen/eigen into default 2018-10-19 09:48:19 -07:00
Christoph Hertzberg
40fa6f98bf bug #1606: Explicitly set the standard before find_package(StandardMathLibrary). Also replace EIGEN_COMPILER_SUPPORT_CXX11 in favor of EIGEN_COMPILER_SUPPORT_CPP11.
Grafted manually from a4afa90d16
2018-10-19 17:20:51 +02:00
Rasmus Munk Larsen
d8f285852b Only set EIGEN_CONSTEXPR_ARE_DEVICE_FUNC for clang++ if cxx_relaxed_constexpr is available. 2018-10-18 16:55:02 -07:00
Rasmus Munk Larsen
dda68f56ec Fix GPU build due to gpu_assert not always being defined. 2018-10-18 16:29:29 -07:00
Gael Guennebaud
1dcf5a6ed8 fix typo in doc 2018-10-17 09:29:36 +02:00
Eugene Zhulenev
9e96e91936 Move from rvalue arguments in ThreadPool enqueue* methods 2018-10-16 16:48:32 -07:00
Eugene Zhulenev
217d839816 Reduce thread scheduling overhead in parallelFor 2018-10-16 14:53:06 -07:00
Rasmus Munk Larsen
d52763bb4f Merged in ezhulenev/eigen-02 (pull request PR-528)
[TensorBlockIO] Check if it's allowed to squeeze inner dimensions

Approved-by: Rasmus Munk Larsen <rmlarsen@google.com>
2018-10-16 15:39:40 +00:00
Gael Guennebaud
0f780bb0b4 Fix float-to-double warning 2018-10-16 09:19:45 +02:00
Eugene Zhulenev
900c7c61bb Check if it's allowed to squueze inner dimensions in TensorBlockIO 2018-10-15 16:52:33 -07:00
Gael Guennebaud
a39e0f7438 bug #1612: fix regression in "outer-vectorization" of partial reductions for PacketSize==1 (aka complex<double>) 2018-10-16 01:04:25 +02:00
Gael Guennebaud
e3b85771d7 Show call stack in case of failing sparse solving. 2018-10-16 00:43:44 +02:00
Gael Guennebaud
d2d570c116 Remove useless (and broken) resize 2018-10-16 00:42:48 +02:00
Gael Guennebaud
f0fb95135d Iterative solvers: unify and fix handling of multiple rhs.
m_info was not properly computed and the logic was repeated in several places.
2018-10-15 23:47:46 +02:00
Gael Guennebaud
2747b98cfc DGMRES: fix null rhs, fix restart, fix m_isDeflInitialized for multiple solve 2018-10-15 23:46:00 +02:00
Gael Guennebaud
d835a0bf53 relax number of iterations checks to avoid false negatives 2018-10-15 10:23:32 +02:00
Gael Guennebaud
3a33db4de5 merge 2018-10-15 09:22:27 +02:00
Rasmus Munk Larsen
0ed811a9c1 Suppress unused variable compiler warning in sparse subtest 3. 2018-10-12 13:41:57 -07:00
Mark D Ryan
aa110e681b PR 526: Speed up multiplication of small, dynamically sized matrices
The Packet16f, Packet8f and Packet8d types are too large to use with dynamically
sized matrices typically processed by the SliceVectorizedTraversal specialization of
the dense_assignment_loop.  Using these types is likely to lead to little or no
vectorization.  Significant slowdown in the multiplication of these small matrices can
be observed when building with AVX and AVX512 enabled.

This patch introduces a new dense_assignment_kernel that is used when
computing small products whose operands have dynamic dimensions.  It ensures that the
PacketSize used is no larger than 4, thereby increasing the chance that vectorized
instructions will be used when computing the product.

I tested all 969 possible combinations of M, K, and N that are handled by the
dense_assignment_loop on x86 builds.  Although a few combinations are slowed down
by this patch they are far outnumbered by the cases that are sped up, as the
following results demonstrate.


Disabling Packed8d on AVX512 builds:

Total Cases:             969
Better:                  511
Worse:                   85
Same:                    373
Max Improvement:         169.00% (4 8 6)
Max Degradation:         36.50% (8 5 3)
Median Improvement:      35.46%
Median Degradation:      17.41%
Total FLOPs Improvement: 19.42%


Disabling Packet16f and Packed8f on AVX512 builds:

Total Cases:             969
Better:                  658
Worse:                   5
Same:                    306
Max Improvement:         214.05% (8 6 5)
Max Degradation:         22.26% (16 2 1)
Median Improvement:      60.05%
Median Degradation:      13.32%
Total FLOPs Improvement: 59.58%


Disabling Packed8f on AVX builds:

Total Cases:             969
Better:                  663
Worse:                   96
Same:                    210
Max Improvement:         155.29% (4 10 5)
Max Degradation:         35.12% (8 3 2)
Median Improvement:      34.28%
Median Degradation:      15.05%
Total FLOPs Improvement: 26.02%
2018-10-12 15:20:21 +02:00
Eugene Zhulenev
d9392f9e55 Fix code format 2018-11-02 14:51:35 -07:00
Eugene Zhulenev
118520f04a Workaround nbcc+msvc compiler bug 2018-11-02 14:48:28 -07:00
Christoph Hertzberg
24dc076519 Explicitly convert 0 to Scalar for custom types 2018-10-12 10:22:19 +02:00
Gael Guennebaud
8214cf1896 Make sparse_basic includable from sparse_extra, but disable it since sparse_basic(DynamicSparseMatrix) does not compile at all anyways 2018-10-11 10:27:23 +02:00
Gael Guennebaud
43633fbaba Fix warning with AVX512f 2018-10-11 10:13:48 +02:00
Gael Guennebaud
97e2c808e9 Fix avx512 plog(NaN) to return NaN instead of +inf 2018-10-11 10:13:13 +02:00
Gael Guennebaud
b3f66d29a5 Enable avx512 plog with clang 2018-10-11 10:12:21 +02:00
Gael Guennebaud
2ef1b39674 Relaxed fastmath unit test: if std::foo fails, then let's only trigger a warning is numext::foo fails too.
A true error will triggered only if std::foo works but our numext::foo fails.
2018-10-11 09:45:30 +02:00
Gael Guennebaud
1d5a6363ea relax numerical tests from equal to approx (x87) 2018-10-11 09:29:56 +02:00
Gael Guennebaud
f0aa7e40fc Fix regression in changeset 5335659c47 2018-10-10 23:47:30 +02:00
Gael Guennebaud
ce243ee45b bug #520: add diagmat +/- diagmat operators. 2018-10-10 23:38:22 +02:00
Gael Guennebaud
5335659c47 Merged in ezhulenev/eigen-02 (pull request PR-525)
Fix bug in partial reduction of expressions requiring evaluation
2018-10-10 20:59:00 +00:00
Gael Guennebaud
eec0dfd688 bug #632: add specializations for res ?= dense +/- sparse and res ?= sparse +/- dense.
They are rewritten as two compound assignment to by-pass hybrid dense-sparse iterator.
2018-10-10 22:50:15 +02:00
Eugene Zhulenev
8e6dc2c81d Fix bug in partial reduction of expressions requiring evaluation 2018-10-10 13:23:52 -07:00
Gael Guennebaud
76ceae49c1 bug #1609: add inplace transposition unit test 2018-10-10 21:48:58 +02:00
Eugene Zhulenev
2bf1a31d81 Use void type if stl-style iterators are not supported 2018-10-10 10:31:40 -07:00
Christoph Hertzberg
f3130ee1ba Avoid empty macro arguments 2018-10-10 08:23:40 +02:00
Rasmus Munk Larsen
e8918743c1 Merged in ezhulenev/eigen-01 (pull request PR-523)
Compile time detection for unimplemented stl-style iterators
2018-10-09 23:42:01 +00:00
Eugene Zhulenev
befcac883d Hide stl-container detection test under #if 2018-10-09 15:36:01 -07:00
Eugene Zhulenev
c0ca8a9fa3 Compile time detection for unimplemented stl-style iterators 2018-10-09 15:28:23 -07:00