Commit Graph

11260 Commits

Author SHA1 Message Date
rgreenblatt
fdf2ee62c5 Fix missing EIGEN_DEVICE_FUNC 2020-12-20 23:22:53 -05:00
Rasmus Munk Larsen
05754100fe * Add iterative psqrt<double> for AVX and SSE when FMA is available. This provides a ~10% speedup.
* Write iterative sqrt explicitly in terms of pmadd. This gives up to 7% speedup for psqrt<float> with AVX & SSE with FMA.
* Remove iterative psqrt<double> for NEON, because the initial rsqrt apprimation is not accurate enough for convergence in 2 Newton-Raphson steps and with 3 steps, just calling the builtin sqrt insn is faster.

The following benchmarks were compiled with clang "-O2 -fast-math -mfma" and with and without -mavx.

AVX+FMA (float)

name                      old cpu/op  new cpu/op  delta
BM_eigen_sqrt_float/1     1.08ns ± 0%  1.09ns ± 1%    ~
BM_eigen_sqrt_float/8     2.07ns ± 0%  2.08ns ± 1%    ~
BM_eigen_sqrt_float/64    12.4ns ± 0%  12.4ns ± 1%    ~
BM_eigen_sqrt_float/512   95.7ns ± 0%  95.5ns ± 0%    ~
BM_eigen_sqrt_float/4k     776ns ± 0%   763ns ± 0%  -1.67%
BM_eigen_sqrt_float/32k   6.57µs ± 1%  6.13µs ± 0%  -6.69%
BM_eigen_sqrt_float/256k  83.7µs ± 3%  83.3µs ± 2%    ~
BM_eigen_sqrt_float/1M     335µs ± 2%   332µs ± 2%    ~

SSE+FMA (float)
name                      old cpu/op  new cpu/op  delta
BM_eigen_sqrt_float/1     1.08ns ± 0%  1.09ns ± 0%    ~
BM_eigen_sqrt_float/8     2.07ns ± 0%  2.06ns ± 0%    ~
BM_eigen_sqrt_float/64    12.4ns ± 0%  12.4ns ± 1%    ~
BM_eigen_sqrt_float/512   95.7ns ± 0%  96.3ns ± 4%    ~
BM_eigen_sqrt_float/4k     774ns ± 0%   763ns ± 0%  -1.50%
BM_eigen_sqrt_float/32k   6.58µs ± 2%  6.11µs ± 0%  -7.06%
BM_eigen_sqrt_float/256k  82.7µs ± 1%  82.6µs ± 1%    ~
BM_eigen_sqrt_float/1M     330µs ± 1%   329µs ± 2%    ~

SSE+FMA (double)
BM_eigen_sqrt_double/1      1.63ns ± 0%  1.63ns ± 0%     ~
BM_eigen_sqrt_double/8      6.51ns ± 0%  6.08ns ± 0%   -6.68%
BM_eigen_sqrt_double/64     52.1ns ± 0%  46.5ns ± 1%  -10.65%
BM_eigen_sqrt_double/512     417ns ± 0%   374ns ± 1%  -10.29%
BM_eigen_sqrt_double/4k     3.33µs ± 0%  2.97µs ± 1%  -11.00%
BM_eigen_sqrt_double/32k    26.7µs ± 0%  23.7µs ± 0%  -11.07%
BM_eigen_sqrt_double/256k    213µs ± 0%   206µs ± 1%   -3.31%
BM_eigen_sqrt_double/1M      862µs ± 0%   870µs ± 2%   +0.96%

AVX+FMA (double)
name                        old cpu/op  new cpu/op  delta
BM_eigen_sqrt_double/1      1.63ns ± 0%  1.63ns ± 0%     ~
BM_eigen_sqrt_double/8      6.51ns ± 0%  6.06ns ± 0%   -6.95%
BM_eigen_sqrt_double/64     52.1ns ± 0%  46.5ns ± 1%  -10.80%
BM_eigen_sqrt_double/512     417ns ± 0%   373ns ± 1%  -10.59%
BM_eigen_sqrt_double/4k     3.33µs ± 0%  2.97µs ± 1%  -10.79%
BM_eigen_sqrt_double/32k    26.7µs ± 0%  23.8µs ± 0%  -10.94%
BM_eigen_sqrt_double/256k    214µs ± 0%   208µs ± 2%   -2.76%
BM_eigen_sqrt_double/1M      866µs ± 3%   923µs ± 7%     ~
2020-12-16 18:16:11 +00:00
Turing Eret
3bee9422d6 Merge branch 'lambdaknight/eigen-master' 2020-12-16 09:18:24 -07:00
Turing Eret
19e6496ce0 Replace call to FixedDimensions() with a singleton instance of
FixedDimensions.
2020-12-16 07:34:44 -07:00
Rasmus Munk Larsen
6cee8d347e Add an additional step of Newton-Raphson for psqrt<double> on Arm, which otherwise has an error of ~1000 ulps. 2020-12-15 04:06:41 +00:00
Turing Eret
bc7d1599fb TensorStorage with FixedDimensions now has zero instance memory overhead.
Removed m_dimension as instance member of TensorStorage with
FixedDimensions and instead use the template parameter. This
means that the sizeof a pure fixed-size storage is exactly
equal to the data it is storing.
2020-12-14 07:19:34 -07:00
Alexander Grund
cf0b5b0344 Remove code checking for CMake < 3.5
As the CMake version is at least 3.5 the code checking for earlier versions can be removed.
2020-12-14 09:57:44 +00:00
David Tellenbach
751f18f2c0 Remove comma at the end of enumeration list to silence C++03 warnings 2020-12-13 18:11:02 +01:00
Antonio Sanchez
5dc2fbabee Fix implicit cast to double.
Triggers `-Wimplicit-float-conversion`, causing a bunch of build errors
in Google due to `-Wall`.
2020-12-12 09:26:20 -08:00
Antonio Sanchez
55967f87d1 Fix NEON pmax<PropagateNumbers,Packet4bf>.
Simple typo, the max impl called pmin instead of pmax for floats.
2020-12-11 21:50:52 -08:00
Antonio Sanchez
839aa505c3 Fix typo in AVX512 packet math. 2020-12-11 21:35:44 -08:00
David Tellenbach
536c8a79f2 Remove unused macro in Half.h 2020-12-12 00:53:26 +01:00
Antonio Sanchez
8c9976d7f0 Fix more SSE/AVX packet conversions for peven.
MSVC doesn't like function-style casts and forces us to use intrinsics.
2020-12-11 15:46:42 -08:00
Antonio Sanchez
c6efc4e0ba Replace M_LOG2E and M_LN2 with custom macros.
For these to exist we would need to define `_USE_MATH_DEFINES` before
`cmath` or `math.h` is first included.  However, we don't
control the include order for projects outside Eigen, so even defining
the macro in `Eigen/Core` does not fix the issue for projects that
end up including `<cmath>` before Eigen does (explicitly or transitively).

To fix this, we define `EIGEN_LOG2E` and `EIGEN_LN2` ourselves.
2020-12-11 14:34:31 -08:00
Antonio Sanchez
e82722a4a7 Fix MSVC SSE casts.
MSVC doesn't like __m128(__m128i) c-style casts, so packets need to be
converted using intrinsic methods.
2020-12-11 08:52:59 -08:00
Deven Desai
f3d2ea48f5 Fix for broken ROCm/HIP Support
The following commit introduced a breakage in ROCm/HIP support for Eigen.

5ec4907434 (1958e65719641efe5483abc4ce0b61806270f6f3_525_517)

```
Building HIPCC object test/CMakeFiles/gpu_basic.dir/gpu_basic_generated_gpu_basic.cu.o
In file included from /home/rocm-user/eigen/test/gpu_basic.cu:20:
In file included from /home/rocm-user/eigen/test/main.h:356:
In file included from /home/rocm-user/eigen/Eigen/QR:11:
In file included from /home/rocm-user/eigen/Eigen/Core:222:
/home/rocm-user/eigen/Eigen/src/Core/arch/GPU/PacketMath.h:556:10: error: use of undeclared identifier 'half2half2'; did you mean '__half2half2'?
  return half2half2(from);
         ^~~~~~~~~~
         __half2half2
/opt/rocm/hip/include/hip/hcc_detail/hip_fp16.h:547:21: note: '__half2half2' declared here
            __half2 __half2half2(__half x)
                    ^
1 error generated when compiling for gfx900.

```

The cause seems to be a copy-paster error, and the fix is trivial
2020-12-11 16:14:57 +00:00
David Tellenbach
c7eb3a74cb Don't guard psqrt for std::complex<float> with EIGEN_ARCH_ARM64 2020-12-11 12:41:52 +01:00
Everton Constantino
bccf055a7c Add Armv8 guard on PropagateNumbers implementation. 2020-12-10 22:01:55 -03:00
Antonio Sanchez
82c0c18a83 Remove private access of std::deque::_M_impl.
This no longer works on gcc or clang, so we should just remove the hack.
The default should compile to similar code anyways.
2020-12-10 14:59:34 -08:00
David Tellenbach
00be0a7ff3 Fix vectorization of complex sqrt on NEON 2020-12-10 15:23:23 +00:00
David Tellenbach
8eb461a431 Remove comma at end of enumerator list in NEON PacketMath 2020-12-10 15:22:55 +01:00
David Tellenbach
2e8f850c78 Fix a typo in SparseMatrix documentation.
This fixes issue #2091.
2020-12-09 14:48:24 +01:00
Rasmus Munk Larsen
125cc9a5df Implement vectorized complex square root.
Closes #1905

Measured speedup for sqrt of `complex<float>` on Skylake:

SSE:
```
name                      old time/op             new time/op  delta
BM_eigen_sqrt_ctype/1     49.4ns ± 0%             54.3ns ± 0%  +10.01%
BM_eigen_sqrt_ctype/8      332ns ± 0%               50ns ± 1%  -84.97%
BM_eigen_sqrt_ctype/64    2.81µs ± 1%             0.38µs ± 0%  -86.49%
BM_eigen_sqrt_ctype/512   23.8µs ± 0%              3.0µs ± 0%  -87.32%
BM_eigen_sqrt_ctype/4k     202µs ± 0%               24µs ± 2%  -88.03%
BM_eigen_sqrt_ctype/32k   1.63ms ± 0%             0.19ms ± 0%  -88.18%
BM_eigen_sqrt_ctype/256k  13.0ms ± 0%              1.5ms ± 1%  -88.20%
BM_eigen_sqrt_ctype/1M    52.1ms ± 0%              6.2ms ± 0%  -88.18%
```

AVX2:
```
name                      old cpu/op  new cpu/op  delta
BM_eigen_sqrt_ctype/1     53.6ns ± 0%  55.6ns ± 0%   +3.71%
BM_eigen_sqrt_ctype/8      334ns ± 0%    27ns ± 0%  -91.86%
BM_eigen_sqrt_ctype/64    2.79µs ± 0%  0.22µs ± 2%  -92.28%
BM_eigen_sqrt_ctype/512   23.8µs ± 1%   1.7µs ± 1%  -92.81%
BM_eigen_sqrt_ctype/4k     201µs ± 0%    14µs ± 1%  -93.24%
BM_eigen_sqrt_ctype/32k   1.62ms ± 0%  0.11ms ± 1%  -93.29%
BM_eigen_sqrt_ctype/256k  13.0ms ± 0%   0.9ms ± 1%  -93.31%
BM_eigen_sqrt_ctype/1M    52.0ms ± 0%   3.5ms ± 1%  -93.31%
```

AVX512:
```
name                      old cpu/op  new cpu/op  delta
BM_eigen_sqrt_ctype/1     53.7ns ± 0%  56.2ns ± 1%   +4.75%
BM_eigen_sqrt_ctype/8      334ns ± 0%    18ns ± 2%  -94.63%
BM_eigen_sqrt_ctype/64    2.79µs ± 0%  0.12µs ± 1%  -95.54%
BM_eigen_sqrt_ctype/512   23.9µs ± 1%   1.0µs ± 1%  -95.89%
BM_eigen_sqrt_ctype/4k     202µs ± 0%     8µs ± 1%  -96.13%
BM_eigen_sqrt_ctype/32k   1.63ms ± 0%  0.06ms ± 1%  -96.15%
BM_eigen_sqrt_ctype/256k  13.0ms ± 0%   0.5ms ± 4%  -96.11%
BM_eigen_sqrt_ctype/1M    52.1ms ± 0%   2.0ms ± 1%  -96.13%
```
2020-12-08 18:13:35 -08:00
Antonio Sanchez
8cfe0db108 Fix host/device calls for __half.
The previous code had `__host__ __device__` functions calling `__device__`
functions (e.g. `__low2half`) which caused build failures in tensorflow.
Also tried to simplify the `#ifdef` guards to make them more clear.
2020-12-08 20:31:02 +00:00
Everton Constantino
baf9d762b7 - Enabling PropagateNaN and PropagateNumbers for NEON.
- Adding propagate tests to bfloat16.
2020-12-08 17:05:05 +00:00
Antonio Sanchez
634bd79b0e Fix unused warning on new dense_assignment_loop impl. 2020-12-07 19:14:21 -08:00
Antonio Sanchez
655c3a4042 Add specialization for compile-time zero-sized dense assignment.
In the current `dense_assignment_loop` implementations, if the
destination's inner or outer size is zero at compile time and if the kernel
involves a product, we currently get a compile error (#2080).  This is
triggered by attempting to multiply a non-existent row by a column (or
vice-versa).

To address this, we add a specialization for zero-sized assignments
(`AllAtOnceTraversal`) which evaluates to a no-op. We also add a static
check to ensure the size is in-fact zero. This now seems to be the only
existing use of `AllAtOnceTraversal`.

Fixes #2080.
2020-12-07 08:38:43 -08:00
Antonio Sanchez
5ec4907434 Clean up #ifs in GPU PacketPath.
Removed redundant checks and redundant code for CUDA/HIP.

Note: there are several issues here of calling `__device__` functions
from `__host__ __device__` functions, in particular `__low2half`.
We do not address that here -- only modifying this file enough
to get our current tests to compile.

Fixed: #1847
2020-12-04 16:14:03 -08:00
Rasmus Munk Larsen
f9fac1d5b0 Add log2() to Eigen. 2020-12-04 21:45:09 +00:00
Antonio Sanchez
2dbac2f99f Fix bad NEON fp16 check 2020-12-04 13:42:18 -08:00
Antonio Sanchez
e2f21465fe Special function implementations for half/bfloat16 packets.
Current implementations fail to consider half-float packets, only
half-float scalars.  Added specializations for packets on AVX, AVX512 and
NEON.  Added tests to `special_packetmath`.

The current `special_functions` tests would fail for half and bfloat16 due to
lack of precision. The NEON tests also fail with precision issues and
due to different handling of `sqrt(inf)`, so special functions bessel, ndtri
have been disabled.

Tested with AVX, AVX512.
2020-12-04 10:16:29 -08:00
David Tellenbach
305b8bd277 Remove duplicate #if clause 2020-12-04 18:55:46 +01:00
Antonio Sanchez
9ee9ac81de Fix shfl* macros for CUDA/HIP
The `shfl*` functions are `__device__` only, and adjusted `#ifdef`s so
they are defined whenever the corresponding CUDA/HIP ones are.

Also changed the HIP/CUDA<9.0 versions to cast to int instead of
doing the conversion `half`<->`float`.

Fixes #2083
2020-12-04 17:18:32 +00:00
shrek1402
a9a2f2bebf The function 'prefetch' did not work correctly on the win64 platform 2020-12-04 17:18:08 +00:00
Rasmus Munk Larsen
f23dc5b971 Revert "Add log2() operator to Eigen"
This reverts commit 4d91519a9b.
2020-12-03 14:32:45 -08:00
Rasmus Munk Larsen
4d91519a9b Add log2() operator to Eigen 2020-12-03 22:31:44 +00:00
Rasmus Munk Larsen
25d8ae7465 Small cleanup of generic plog implementations:
Adding the term e*ln(2) is split into two step for no obvious reason.
This dates back to the original Cephes code from which the algorithm is adapted.
It appears that this was done in Cephes to prevent the compiler from reordering
the addition of the 3 terms in the approximation

  log(1+x) ~= x - 0.5*x^2 + x^3*P(x)/Q(x)

which must be added in reverse order since |x| < (sqrt(2)-1).

This allows rewriting the code to just 2 pmadd and 1 padd instructions,
which on a Skylake processor speeds up the code by 5-7%.
2020-12-03 19:40:40 +00:00
Antonio Sanchez
eb4d4ae070 Include chrono in main for c++11.
Hack to fix tensor tests, since min/max are overridden by `main.h`.
2020-12-03 11:27:32 -08:00
Rasmus Munk Larsen
71c85df4c1 Clean up the Tensor header and get rid of the EIGEN_SLEEP macro. 2020-12-02 11:04:04 -08:00
Antonio Sanchez
70fbcf82ed Fix typo in F32MaskToBf16Mask. 2020-12-02 07:58:34 -08:00
Antonio Sanchez
2627e2f2e6 Fix neon cmp* functions for bf16.
The current impl corrupts the comparison masks when converting
from float back to bfloat16.  The resulting masks are then
no longer all zeros or all ones, which breaks when used with
`pselect` (e.g. in `pmin<PropagateNumbers>`).  This was
causing `packetmath_15` to fail on arm.

Introducing a simple `F32MaskToBf16Mask` corrects this (takes
the lower 16-bits for each float mask).
2020-12-02 01:29:34 +00:00
Antonio Sanchez
ddd48b242c Implement CUDA __shfl* for Eigen::half
Prior to this fix, `TensorContractionGpu` and the `cxx11_tensor_of_float16_gpu`
test are broken, as well as several ops in Tensorflow. The gpu functions
`__shfl*` became ambiguous now that `Eigen::half` implicitly converts to float.
Here we add the required specializations.
2020-12-01 14:36:52 -08:00
Rasmus Munk Larsen
e57281a741 Fix a few issues for AVX512. This change enables vectorized versions of log, exp, log1p, expm1 when AVX512DQ is not available. 2020-12-01 11:31:47 -08:00
Antonio Sanchez
1992af3de2 Fix #2077, EIGEN_CONSTEXPR in Half.
`bit_cast` cannot be `constexpr`, so we need to remove `EIGEN_CONSTEXPR` from
`raw_half_as_uint16(...)`.  This shouldn't affect anything else, since
it is only used in `a bit_cast<uint16_t,half>()` which is not itself
`constexpr`.

Fixes #2077.
2020-12-01 03:10:21 +00:00
acxz
7b80609d49 add EIGEN_DEVICE_FUNC to methods 2020-12-01 03:08:47 +00:00
Antonio Sanchez
89f90b585d AVX512 missing ops.
This allows the `packetmath` tests to pass for AVX512 on skylake.
Made `half` and `bfloat16` consistent in terms of ops they support.

Note the `log` tests are currently disabled for `bfloat16` since
they fail due to poor precision (they were previously disabled for
`Packet8bf` via test function specialization -- I just removed that
specialization and disabled it in the generic test).
2020-11-30 16:28:57 +00:00
Florian Maurin
c5985c46f5 Fix typo in doc 2020-11-30 10:53:29 +00:00
Jim Lersch
68f69414f7 Workaround for doxygen class template titles in which the template
part of the class signature is lost due to a problem with forward
declarations.  The problem is probably caused by doxygen bug #7689.
It is confirmed to be fixed in doxygen >= 1.8.19.
2020-11-27 19:52:16 -07:00
Jim Lersch
a7170f2aca Fix doxygen class blocks that were not associated with the correct classes. 2020-11-27 08:48:11 -07:00
David Tellenbach
550e8f8f57 Include CMakeDependentOption to be able to use cmake_dependent_option 2020-11-27 13:21:49 +01:00