Commit Graph

8895 Commits

Author SHA1 Message Date
Benoit Steiner
a498ff7df6 Fixed incorrect comment 2016-10-06 15:27:27 -07:00
Benoit Steiner
8ba3c41fcf Revergted unecessary change 2016-10-06 15:12:15 -07:00
Benoit Steiner
a7473d6d5a Fixed compilation error with gcc >= 5.3 2016-10-06 14:33:22 -07:00
Benoit Steiner
5e64cea896 Silenced a compilation warning 2016-10-06 14:24:17 -07:00
Benoit Steiner
33fba3f08d Merged in rryan/eigen/tensorfunctors (pull request PR-233)
Fully support complex types in SumReducer and MeanReducer when building for CUDA by using scalar_sum_op and scalar_product_op instead of operator+ and operator*.
2016-10-06 12:29:19 -07:00
RJ Ryan
bfc264abe8 Add a test that GPU complex product reductions match CPU reductions. 2016-10-06 11:10:14 -07:00
RJ Ryan
e2e9cdd169 Fully support complex types in SumReducer and MeanReducer when building for CUDA by using scalar_sum_op and scalar_product_op instead of operator+ and operator*. 2016-10-06 10:49:48 -07:00
Benoit Steiner
d485d12c51 Added missing AVX intrinsics for fp16: in particular, implemented predux which is required by the matrix-vector code. 2016-10-06 10:41:03 -07:00
Rasmus Munk Larsen
48c635e223 Add a simple cost model to prevent Eigen's parallel GEMM from using too many threads when the inner dimension is small.
Timing for square matrices is unchanged, but both CPU and Wall time are significantly improved for skinny matrices. The benchmarks below are for multiplying NxK * KxN matrices with test names of the form BM_OuterishProd/N/K.

Improvements in Wall time:

Run on [redacted] (12 X 3501 MHz CPUs); 2016-10-05T17:40:02.462497196-07:00
CPU: Intel Haswell with HyperThreading (6 cores) dL1:32KB dL2:256KB dL3:15MB
Benchmark                          Base (ns)  New (ns) Improvement
------------------------------------------------------------------
BM_OuterishProd/64/1                    3088      1610    +47.9%
BM_OuterishProd/64/4                    3562      2414    +32.2%
BM_OuterishProd/64/32                   8861      7815    +11.8%
BM_OuterishProd/128/1                  11363      6504    +42.8%
BM_OuterishProd/128/4                  11128      9794    +12.0%
BM_OuterishProd/128/64                 27691     27396     +1.1%
BM_OuterishProd/256/1                  33214     28123    +15.3%
BM_OuterishProd/256/4                  34312     36818     -7.3%
BM_OuterishProd/256/128               174866    176398     -0.9%
BM_OuterishProd/512/1                7963684    104224    +98.7%
BM_OuterishProd/512/4                7987913    112867    +98.6%
BM_OuterishProd/512/256              8198378   1306500    +84.1%
BM_OuterishProd/1k/1                 7356256    324432    +95.6%
BM_OuterishProd/1k/4                 8129616    331621    +95.9%
BM_OuterishProd/1k/512              27265418   7517538    +72.4%

Improvements in CPU time:

Run on [redacted] (12 X 3501 MHz CPUs); 2016-10-05T17:40:02.462497196-07:00
CPU: Intel Haswell with HyperThreading (6 cores) dL1:32KB dL2:256KB dL3:15MB
Benchmark                          Base (ns)  New (ns) Improvement
------------------------------------------------------------------
BM_OuterishProd/64/1                    6169      1608    +73.9%
BM_OuterishProd/64/4                    7117      2412    +66.1%
BM_OuterishProd/64/32                  17702     15616    +11.8%
BM_OuterishProd/128/1                  45415      6498    +85.7%
BM_OuterishProd/128/4                  44459      9786    +78.0%
BM_OuterishProd/128/64                110657    109489     +1.1%
BM_OuterishProd/256/1                 265158     28101    +89.4%
BM_OuterishProd/256/4                 274234    183885    +32.9%
BM_OuterishProd/256/128              1397160   1408776     -0.8%
BM_OuterishProd/512/1               78947048    520703    +99.3%
BM_OuterishProd/512/4               86955578   1349742    +98.4%
BM_OuterishProd/512/256             74701613  15584661    +79.1%
BM_OuterishProd/1k/1                78352601   3877911    +95.1%
BM_OuterishProd/1k/4                78521643   3966221    +94.9%
BM_OuterishProd/1k/512              258104736  89480530    +65.3%
2016-10-06 10:33:10 -07:00
Benoit Steiner
9f3276981c Enabling AVX512 should also enable AVX2. 2016-10-06 10:29:48 -07:00
Gael Guennebaud
80b5133789 Fix compilation of qr.inverse() for column and full pivoting variants. 2016-10-06 09:55:50 +02:00
Benoit Steiner
4131074818 Deleted unecessary CMakeLists.txt file 2016-10-05 18:54:35 -07:00
Benoit Steiner
cb5cd69872 Silenced a compilation warning. 2016-10-05 18:50:53 -07:00
Benoit Steiner
78b569f685 Merged latest updates from trunk 2016-10-05 18:48:55 -07:00
Benoit Steiner
9c2b6c049b Silenced a few compilation warnings 2016-10-05 18:37:31 -07:00
Benoit Steiner
6f3cd529af Pulled latest updates from trunk 2016-10-05 18:31:43 -07:00
Benoit Steiner
d7f9679a34 Fixed a couple of compilation warnings 2016-10-05 15:00:32 -07:00
Benoit Steiner
ae1385c7e4 Pull the latest updates from trunk 2016-10-05 14:54:36 -07:00
Benoit Steiner
73b0012945 Fixed compilation warnings 2016-10-05 14:24:24 -07:00
Benoit Steiner
c84084c0c0 Fixed compilation warning 2016-10-05 14:15:41 -07:00
Benoit Steiner
4387433acf Increased the robustness of the reduction tests on fp16 2016-10-05 10:42:41 -07:00
Benoit Steiner
aad20d700d Increase the tolerance to numerical noise. 2016-10-05 10:39:24 -07:00
Benoit Steiner
8b69d5d730 ::rand() returns a signed integer on win32 2016-10-05 08:55:02 -07:00
Benoit Steiner
ed7a220b04 Fixed a typo that impacts windows builds 2016-10-05 08:51:31 -07:00
Benoit Steiner
ceee1c008b Silenced compilation warning 2016-10-04 18:47:53 -07:00
Benoit Steiner
698ff69450 Properly characterize the CUDA packet primitives for fp16 as device only 2016-10-04 16:53:30 -07:00
Rasmus Munk Larsen
7f67e6dfdb Update comment for fast sqrt. 2016-10-04 15:09:11 -07:00
Rasmus Munk Larsen
765615609d Update comment for fast sqrt. 2016-10-04 15:08:41 -07:00
Rasmus Munk Larsen
3ed67cb0bb Fix a bug in the implementation of Carmack's fast sqrt algorithm in Eigen (enabled by EIGEN_FAST_MATH), which causes the vectorized parts of the computation to return -0.0 instead of NaN for negative arguments.
Benchmark speed in Giga-sqrts/s
Intel(R) Xeon(R) CPU E5-1650 v3 @ 3.50GHz
-----------------------------------------
                    SSE        AVX
Fast=1              2.529G     4.380G
Fast=0              1.944G     1.898G
Fast=1 fixed        2.214G     3.739G

This table illustrates the worst case in terms speed impact: It was measured by repeatedly computing the sqrt of an n=4096 float vector that fits in L1 cache. For large vectors the operation becomes memory bound and the differences between the different versions almost negligible.
2016-10-04 14:22:56 -07:00
Benoit Steiner
6af5ac7e27 Cleanup the cuda executor code. 2016-10-04 08:52:13 -07:00
Benoit Steiner
2f6d1607c8 Cleaned up the random number generation code. 2016-10-04 08:38:23 -07:00
Benoit Steiner
881b90e984 Use explicit type casting to generate packets of zeros. 2016-10-04 08:23:38 -07:00
Benoit Steiner
616a7a1912 Improved support for compiling CUDA code with clang as the host compiler 2016-10-03 17:09:33 -07:00
Benoit Steiner
409e887d78 Added support for constand std::complex numbers on GPU 2016-10-03 11:06:24 -07:00
Gael Guennebaud
9d6d0dff8f bug #1317: fix performance regression with some Block expressions and clang by helping it to remove dead code.
The trick is to get rid of the nested expression in the evaluator by copying only the required information (here, the strides).
2016-10-01 15:37:00 +02:00
Gael Guennebaud
8b84801f7f bug #1310: workaround a compilation regression from 3.2 regarding triangular * homogeneous 2016-09-30 22:49:59 +02:00
Benoit Steiner
422530946f Renamed the SYCL tests to follow the standard naming convention. 2016-09-30 08:22:10 -07:00
Gael Guennebaud
67b4f45836 Fix angle range 2016-09-30 12:46:33 +02:00
Gael Guennebaud
27f3970453 Remove std:: prefix 2016-09-30 12:40:41 +02:00
Gael Guennebaud
3860a0bc8f bug #1312: Quaternion to AxisAngle conversion now ensures the angle will be in the range [-pi,pi]. This also increases accuracy when q.w is negative. 2016-09-29 23:23:35 +02:00
Gael Guennebaud
33500050c3 bug #1308: fix compilation of some small products involving nullary-expressions. 2016-09-29 09:40:44 +02:00
Benoit Steiner
27d7628f16 Updated the list of warnings to reflect the new message ids introduced in cuda 8.0 2016-09-28 17:42:59 -07:00
Benoit Steiner
2bda1b0d93 Updated the tensor sum and mean reducer to enable them to process complex numbers on cuda gpus. 2016-09-28 17:08:41 -07:00
Mehdi Goli
dd602e62c8 Converting alias template to nested struct in order to be compatible with CXX-03 2016-09-27 16:21:19 +01:00
Gael Guennebaud
f3a00dd2b5 Merged in sergiu/eigen (pull request PR-229)
Disabled MSVC level 4 warning C4714
2016-09-27 09:28:08 +02:00
Gael Guennebaud
892afb9416 Add debug info. 2016-09-26 23:53:57 +02:00
Gael Guennebaud
779774f98c bug #1311: fix alignment logic in some cases of (scalar*small).lazyProduct(small) 2016-09-26 23:53:40 +02:00
Benoit Steiner
6565f8d60f Made the initialization of a CUDA device thread safe. 2016-09-26 11:00:32 -07:00
Gael Guennebaud
48dfe98abd bug #1308: fix compilation of vector * rowvector::nullary. 2016-09-25 14:54:35 +02:00
Sergiu Deitsch
fe29157d02 disabled MSVC level 4 warning C4714
The level 4 warning (/W4) warns about functions marked as __forceinline not
inlined, and generates a lot of noise.
2016-09-25 14:25:47 +02:00