Commit Graph

1589 Commits

Author SHA1 Message Date
Christoph Hertzberg
718521d5cf Silenced several double-promotion warnings 2016-05-22 18:17:04 +02:00
Christoph Hertzberg
25a03c02d6 Fix some sign-compare warnings 2016-05-22 16:42:27 +02:00
Gael Guennebaud
ccaace03c9 Make EIGEN_HAS_CONSTEXPR user configurable 2016-05-20 15:10:08 +02:00
Gael Guennebaud
c3410804cd Make EIGEN_HAS_VARIADIC_TEMPLATES user configurable 2016-05-20 15:05:38 +02:00
Gael Guennebaud
48bf5ec216 Make EIGEN_HAS_RVALUE_REFERENCES user configurable 2016-05-20 14:54:20 +02:00
Gael Guennebaud
f43ae88892 Rename EIGEN_HAVE_RVALUE_REFERENCES to EIGEN_HAS_RVALUE_REFERENCES 2016-05-20 14:48:51 +02:00
Gael Guennebaud
2f656ce447 Remove std:: to enable custom scalar types. 2016-05-19 23:13:47 +02:00
Rasmus Larsen
b1e080c752 Merged eigen/eigen into default 2016-05-18 15:21:50 -07:00
Rasmus Munk Larsen
5624219b6b Merge. 2016-05-18 15:16:06 -07:00
Rasmus Munk Larsen
7df811cfe5 Minor cleanups: 1. Get rid of unused variables. 2. Get rid of last uses of EIGEN_USE_COST_MODEL. 2016-05-18 15:09:48 -07:00
Benoit Steiner
bb3ff8e9d9 Advertize the packet api of the tensor reducers iff the corresponding packet primitives are available. 2016-05-18 14:52:49 -07:00
Gael Guennebaud
548a487800 bug #1229: bypass usage of Derived::Options which is available for plain matrix types only. Better use column-major storage anyway. 2016-05-18 16:44:05 +02:00
Gael Guennebaud
43790e009b Pass argument by const ref instead of by value in pow(AutoDiffScalar...) 2016-05-18 16:28:02 +02:00
Gael Guennebaud
1fbfab27a9 bug #1223: fix compilation of AutoDiffScalar's min/max operators, and add regression unit test. 2016-05-18 16:26:26 +02:00
Gael Guennebaud
448d9d943c bug #1222: fix compilation in AutoDiffScalar and add respective unit test 2016-05-18 16:00:11 +02:00
Rasmus Munk Larsen
f519fca72b Reduce overhead for small tensors and cheap ops by short-circuiting the const computation and block size calculation in parallelFor. 2016-05-17 16:06:00 -07:00
Benoit Steiner
86ae94462e #if defined(EIGEN_USE_NONBLOCKING_THREAD_POOL) is now #if !defined(EIGEN_USE_SIMPLE_THREAD_POOL): the non blocking thread pool is the default since it's more scalable, and one needs to request the old thread pool explicitly. 2016-05-17 14:06:15 -07:00
Benoit Steiner
997c335970 Fixed compilation error 2016-05-17 12:54:18 -07:00
Benoit Steiner
ebf6ada5ee Fixed compilation error in the tensor thread pool 2016-05-17 12:33:46 -07:00
Rasmus Munk Larsen
0bb61b04ca Merge upstream. 2016-05-17 10:26:10 -07:00
Rasmus Munk Larsen
0dbd68145f Roll back changes to core. Move include of TensorFunctors.h up to satisfy dependence in TensorCostModel.h. 2016-05-17 10:25:19 -07:00
Rasmus Larsen
00228f2506 Merged eigen/eigen into default 2016-05-17 09:49:31 -07:00
Benoit Steiner
e7e64c3277 Enable the use of the packet api to evaluate tensor broadcasts. This speed things up quite a bit:
Before"
M_broadcasting/10        500000       3690    27.10 MFlops/s
BM_broadcasting/80        500000       4014  1594.24 MFlops/s
BM_broadcasting/640       100000      14770 27731.35 MFlops/s
BM_broadcasting/4K          5000     632711 39512.48 MFlops/s
After:
BM_broadcasting/10        500000       4287    23.33 MFlops/s
BM_broadcasting/80        500000       4455  1436.41 MFlops/s
BM_broadcasting/640       200000      10195 40173.01 MFlops/s
BM_broadcasting/4K          5000     423746 58997.57 MFlops/s
2016-05-17 09:24:35 -07:00
Benoit Steiner
5fa27574dd Allow vectorized padding on GPU. This helps speed things up a little
Before:
BM_padding/10            5000000        460   217.03 MFlops/s
BM_padding/80            5000000        460 13899.40 MFlops/s
BM_padding/640           5000000        461 888421.17 MFlops/s
BM_padding/4K            5000000        460 54316322.55 MFlops/s
After:
BM_padding/10            5000000        454   220.20 MFlops/s
BM_padding/80            5000000        455 14039.86 MFlops/s
BM_padding/640           5000000        452 904968.83 MFlops/s
BM_padding/4K            5000000        411 60750049.21 MFlops/s
2016-05-17 09:17:26 -07:00
Benoit Steiner
8d06c02ffd Allow vectorized padding on GPU. This helps speed things up a little.
Before:
BM_padding/10            5000000        460   217.03 MFlops/s
BM_padding/80            5000000        460 13899.40 MFlops/s
BM_padding/640           5000000        461 888421.17 MFlops/s
BM_padding/4K            5000000        460 54316322.55 MFlops/s
After:
BM_padding/10            5000000        454   220.20 MFlops/s
BM_padding/80            5000000        455 14039.86 MFlops/s
BM_padding/640           5000000        452 904968.83 MFlops/s
BM_padding/4K            5000000        411 60750049.21 MFlops/s
2016-05-17 09:13:27 -07:00
David Dement
ccc7563ac5 made a fix to the GMRES solver so that it now correctly reports the error achieved in the solution process 2016-05-16 14:26:41 -04:00
Benoit Steiner
a80d875916 Added missing costPerCoeff method 2016-05-16 09:31:10 -07:00
Benoit Steiner
83ef39e055 Turn on the cost model by default. This results in some significant speedups for smaller tensors. For example, below are the results for the various tensor reductions.
Before:
BM_colReduction_12T/10       1000000       1949    51.29 MFlops/s
BM_colReduction_12T/80        100000      15636   409.29 MFlops/s
BM_colReduction_12T/640        20000      95100  4307.01 MFlops/s
BM_colReduction_12T/4K           500    4573423  5466.36 MFlops/s
BM_colReduction_4T/10        1000000       1867    53.56 MFlops/s
BM_colReduction_4T/80         500000       5288  1210.11 MFlops/s
BM_colReduction_4T/640         10000     106924  3830.75 MFlops/s
BM_colReduction_4T/4K            500    9946374  2513.48 MFlops/s
BM_colReduction_8T/10        1000000       1912    52.30 MFlops/s
BM_colReduction_8T/80         200000       8354   766.09 MFlops/s
BM_colReduction_8T/640         20000      85063  4815.22 MFlops/s
BM_colReduction_8T/4K            500    5445216  4591.19 MFlops/s
BM_rowReduction_12T/10       1000000       2041    48.99 MFlops/s
BM_rowReduction_12T/80        100000      15426   414.87 MFlops/s
BM_rowReduction_12T/640        50000      39117 10470.98 MFlops/s
BM_rowReduction_12T/4K           500    3034298  8239.14 MFlops/s
BM_rowReduction_4T/10        1000000       1834    54.51 MFlops/s
BM_rowReduction_4T/80         500000       5406  1183.81 MFlops/s
BM_rowReduction_4T/640         50000      35017 11697.16 MFlops/s
BM_rowReduction_4T/4K            500    3428527  7291.76 MFlops/s
BM_rowReduction_8T/10        1000000       1925    51.95 MFlops/s
BM_rowReduction_8T/80         200000       8519   751.23 MFlops/s
BM_rowReduction_8T/640         50000      33441 12248.42 MFlops/s
BM_rowReduction_8T/4K           1000    2852841  8763.19 MFlops/s


After:
BM_colReduction_12T/10      50000000         59  1678.30 MFlops/s
BM_colReduction_12T/80       5000000        725  8822.71 MFlops/s
BM_colReduction_12T/640        20000      90882  4506.93 MFlops/s
BM_colReduction_12T/4K           500    4668855  5354.63 MFlops/s
BM_colReduction_4T/10       50000000         59  1687.37 MFlops/s
BM_colReduction_4T/80        5000000        737  8681.24 MFlops/s
BM_colReduction_4T/640         50000     108637  3770.34 MFlops/s
BM_colReduction_4T/4K            500    7912954  3159.38 MFlops/s
BM_colReduction_8T/10       50000000         60  1657.21 MFlops/s
BM_colReduction_8T/80        5000000        726  8812.48 MFlops/s
BM_colReduction_8T/640         20000      91451  4478.90 MFlops/s
BM_colReduction_8T/4K            500    5441692  4594.16 MFlops/s
BM_rowReduction_12T/10      20000000         93  1065.28 MFlops/s
BM_rowReduction_12T/80       2000000        950  6730.96 MFlops/s
BM_rowReduction_12T/640        50000      38196 10723.48 MFlops/s
BM_rowReduction_12T/4K           500    3019217  8280.29 MFlops/s
BM_rowReduction_4T/10       20000000         93  1064.30 MFlops/s
BM_rowReduction_4T/80        2000000        959  6667.71 MFlops/s
BM_rowReduction_4T/640         50000      37433 10941.96 MFlops/s
BM_rowReduction_4T/4K            500    3036476  8233.23 MFlops/s
BM_rowReduction_8T/10       20000000         93  1072.47 MFlops/s
BM_rowReduction_8T/80        2000000        959  6670.04 MFlops/s
BM_rowReduction_8T/640         50000      38069 10759.37 MFlops/s
BM_rowReduction_8T/4K           1000    2758988  9061.29 MFlops/s
2016-05-16 08:55:21 -07:00
Benoit Steiner
b789a26804 Fixed syntax error 2016-05-16 08:51:08 -07:00
Benoit Steiner
83dfb40f66 Turnon the new thread pool by default since it scales much better over multiple cores. It is still possible to revert to the old thread pool by compiling with the EIGEN_USE_SIMPLE_THREAD_POOL define. 2016-05-13 17:23:15 -07:00
Benoit Steiner
97605c7b27 New multithreaded contraction that doesn't rely on the thread pool to run the closure in the order in which they are enqueued. This is needed in order to switch to the new non blocking thread pool since this new thread pool can execute the closure in any order. 2016-05-13 17:11:29 -07:00
Benoit Steiner
c4fc8b70ec Removed unnecessary thread synchronization 2016-05-13 10:49:38 -07:00
Benoit Steiner
7aa3557d31 Fixed compilation errors triggered by old versions of gcc 2016-05-12 18:59:04 -07:00
Rasmus Munk Larsen
5005b27fc8 Diasbled cost model by accident. Revert. 2016-05-12 16:55:21 -07:00
Rasmus Munk Larsen
989e419328 Address comments by bsteiner. 2016-05-12 16:54:19 -07:00
Rasmus Munk Larsen
e55deb21c5 Improvements to parallelFor.
Move some scalar functors from TensorFunctors. to Eigen core.
2016-05-12 14:07:22 -07:00
Benoit Steiner
ae9688f313 Worked around a compilation error triggered by nvcc when compiling a tensor concatenation kernel. 2016-05-12 12:06:51 -07:00
Benoit Steiner
2a54b70d45 Fixed potential race condition in the non blocking thread pool 2016-05-12 11:45:48 -07:00
Benoit Steiner
a071629fec Replace implicit cast with an explicit one 2016-05-12 10:40:07 -07:00
Benoit Steiner
2f9401b061 Worked around compilation errors with older versions of gcc 2016-05-11 23:39:20 -07:00
Benoit Steiner
09653e1f82 Improved the portability of the tensor code 2016-05-11 23:29:09 -07:00
Benoit Steiner
b6a517c47d Added the ability to load fp16 using the texture path.
Improved the performance of some reductions on fp16
2016-05-11 21:26:48 -07:00
Christoph Hertzberg
1a1ce6ff61 Removed deprecated flag (which apparently was ignored anyway) 2016-05-11 23:05:37 +02:00
Christoph Hertzberg
2150f13d65 fixed some double-promotion and sign-compare warnings 2016-05-11 23:02:26 +02:00
Benoit Steiner
217d984abc Fixed a typo in my previous commit 2016-05-11 10:22:15 -07:00
Benoit Steiner
08348b4e48 Fix potential race condition in the CUDA reduction code. 2016-05-11 10:08:51 -07:00
Benoit Steiner
6a5717dc74 Explicitely initialize all the atomic variables. 2016-05-11 10:04:41 -07:00
Benoit Steiner
4ede059de1 Properly gate the use of half2. 2016-05-10 17:04:01 -07:00
Benoit Steiner
661e710092 Added support for fp16 to the sigmoid functor. 2016-05-10 12:25:27 -07:00
Benoit Steiner
0eb69b7552 Small improvement to the full reduction of fp16 2016-05-10 11:58:18 -07:00
Benoit Steiner
4013b8feca Simplified the reduction code a little. 2016-05-10 09:40:42 -07:00
Benoit Steiner
4670d7d5ce Improved the performance of full reductions on GPU:
Before:
BM_fullReduction/10       200000      11751     8.51 MFlops/s
BM_fullReduction/80         5000     523385    12.23 MFlops/s
BM_fullReduction/640          50   36179326    11.32 MFlops/s
BM_fullReduction/4K            1 2173517195    11.50 MFlops/s

After:
BM_fullReduction/10       500000       5987    16.70 MFlops/s
BM_fullReduction/80       200000      10636   601.73 MFlops/s
BM_fullReduction/640       50000      58428  7010.31 MFlops/s
BM_fullReduction/4K         1000    2006106 12461.95 MFlops/s
2016-05-09 17:09:54 -07:00
Benoit Steiner
c3859a2b58 Added the ability to use a scratch buffer in cuda kernels 2016-05-09 17:05:53 -07:00
Benoit Steiner
ba95e43ea2 Added a new parallelFor api to the thread pool device. 2016-05-09 10:45:12 -07:00
Benoit Steiner
dc7dbc2df7 Optimized the non blocking thread pool:
* Use a pseudo-random permutation of queue indices during random stealing. This ensures that all the queues are considered.
 * Directly pop from a non-empty queue when we are waiting for work,
instead of first noticing that there is a non-empty queue and
then doing another round of random stealing to re-discover the non-empty
queue.
 * Steal only 1 task from a remote queue instead of half of tasks.
2016-05-09 10:17:17 -07:00
Benoit Steiner
c54ae65c83 Marked a few tensor operations as read only 2016-05-05 17:18:47 -07:00
Benoit Steiner
910e013506 Relaxed an assertion that was tighter that necessary. 2016-05-05 15:38:16 -07:00
Benoit Steiner
28d5572658 Fixed some incorrect assertions 2016-05-05 10:02:26 -07:00
Benoit Steiner
a4d6e8fef0 Strongly hint but don't force the compiler to unroll a some loops in the tensor executor. This results in up to 27% faster code. 2016-05-05 09:25:55 -07:00
Benoit Steiner
f363e533aa Added tests for full contractions using thread pools and gpu devices.
Fixed a couple of issues in the corresponding code.
2016-05-05 09:05:45 -07:00
Benoit Steiner
06d774bf58 Updated the contraction code to ensure that full contraction return a tensor of rank 0 2016-05-05 08:37:47 -07:00
Christoph Hertzberg
dacb469bc9 Enable and fix -Wdouble-conversion warnings 2016-05-05 13:35:45 +02:00
Benoit Steiner
dd2b45feed Removed extraneous 'explicit' keywords 2016-05-04 16:57:52 -07:00
Benoit Steiner
968ec1c2ae Use numext::isfinite instead of std::isfinite 2016-05-03 19:56:40 -07:00
Benoit Steiner
aad9a04da4 Deleted superfluous explicit keyword. 2016-05-03 09:37:19 -07:00
Benoit Steiner
8a9228ed9b Fixed compilation error 2016-05-01 14:48:01 -07:00
Benoit Steiner
d6c9596fd8 Added missing accessors to fixed sized tensors 2016-04-29 18:51:33 -07:00
Benoit Steiner
17fe7f354e Deleted trailing commas 2016-04-29 18:39:01 -07:00
Benoit Steiner
e5f71aa6b2 Deleted useless trailing commas 2016-04-29 18:36:10 -07:00
Benoit Steiner
44f592dceb Deleted unnecessary trailing commas. 2016-04-29 18:33:46 -07:00
Benoit Steiner
f100d1494c Return the proper size (ie 1) for tensors of rank 0 2016-04-29 18:14:33 -07:00
Benoit Steiner
a8c0405cf5 Deleted unused default values for template parameters 2016-04-29 16:34:43 -07:00
Benoit Steiner
c07404f6a1 Restore Tensor support for non c++11 compilers 2016-04-29 15:19:19 -07:00
Benoit Steiner
ba32ded021 Fixed include path 2016-04-29 15:11:09 -07:00
Gael Guennebaud
318e65e0ae Fix missing inclusion of Eigen/Core 2016-04-27 23:05:40 +02:00
Rasmus Munk Larsen
463738ccbe Use computeProductBlockingSizes to compute blocking for both ShardByCol and ShardByRow cases. 2016-04-27 12:26:18 -07:00
Gael Guennebaud
3dddd34133 Refactor the unsupported CXX11/Core module to internal headers only. 2016-04-26 11:20:25 +02:00
Benoit Steiner
4a164d2c46 Fixed the partial evaluation of non vectorizable tensor subexpressions 2016-04-25 10:43:03 -07:00
Benoit Steiner
fd9401f260 Refined the cost of the striding operation. 2016-04-25 09:16:08 -07:00
Benoit Steiner
4bbc97be5e Provide access to the base threadpool classes 2016-04-21 17:59:33 -07:00
Benoit Steiner
33adce5c3a Added the ability to switch to the new thread pool with a #define 2016-04-21 11:59:58 -07:00
Benoit Steiner
f670613e4b Fixed several compilation warnings 2016-04-21 11:03:02 -07:00
Benoit Steiner
2dde1b1028 Don't crash when attempting to reduce empty tensors. 2016-04-20 18:08:20 -07:00
Benoit Steiner
c7c2054bb5 Started to implement a portable way to yield. 2016-04-19 17:59:58 -07:00
Benoit Steiner
2b72163028 Implemented a more portable version of thread local variables 2016-04-19 15:56:02 -07:00
Benoit Steiner
5b1106c56b Fixed a compilation error with nvcc 7. 2016-04-19 14:57:57 -07:00
Benoit Steiner
7129d998db Simplified the code that launches cuda kernels. 2016-04-19 14:55:21 -07:00
Benoit Steiner
b9ea40c30d Don't take the address of a kernel on CUDA devices that don't support this feature. 2016-04-19 14:35:11 -07:00
Benoit Steiner
884c075058 Use numext::ceil instead of std::ceil 2016-04-19 14:33:30 -07:00
Benoit Steiner
a278414d1b Avoid an unnecessary copy of the evaluator. 2016-04-19 13:54:28 -07:00
Benoit Steiner
50968a0a3e Use DenseIndex in the MeanReducer to avoid overflows when processing very large tensors. 2016-04-19 11:53:58 -07:00
Benoit Steiner
c8e8f93d6c Move the evalGemm method into the TensorContractionEvaluatorBase class to make it accessible from both the single and multithreaded contraction evaluators. 2016-04-15 16:48:10 -07:00
Benoit Steiner
7cff898e0a Deleted unnecessary variable 2016-04-15 15:46:14 -07:00
Benoit Steiner
6c43c49e4a Fixed a few compilation warnings 2016-04-15 15:34:34 -07:00
Benoit Steiner
eb669f989f Merged in rmlarsen/eigen (pull request PR-178)
Eigen Tensor cost model part 2: Thread scheduling for standard evaluators and reductions.
2016-04-15 14:53:15 -07:00
Rasmus Munk Larsen
3718bf654b Get rid of void* casting when calling EvalRange::run. 2016-04-15 12:51:33 -07:00
Benoit Steiner
a62e924656 Added ability to access the cache sizes from the tensor devices 2016-04-14 21:25:06 -07:00
Benoit Steiner
18e6f67426 Added support for exclusive or 2016-04-14 20:37:46 -07:00
Rasmus Munk Larsen
07ac4f7e02 Eigen Tensor cost model part 2: Thread scheduling for standard evaluators and reductions. The cost model is turned off by default. 2016-04-14 18:28:23 -07:00
Benoit Steiner
9624a1ea3d Added missing definition of PacketSize in the gpu evaluator of convolution 2016-04-14 17:16:58 -07:00
Benoit Steiner
6fbedf5a4e Merged in rmlarsen/eigen (pull request PR-177)
Eigen Tensor cost model part 1.
2016-04-14 17:13:19 -07:00
Benoit Steiner
9c064b5a97 Cleanup 2016-04-14 16:41:31 -07:00
Benoit Steiner
1372156c41 Prepared the migration to the new non blocking thread pool 2016-04-14 16:16:42 -07:00
Rasmus Munk Larsen
aeb5494a0b Improvements to cost model. 2016-04-14 15:52:58 -07:00
Benoit Steiner
78a51abc12 Added a more scalable non blocking thread pool 2016-04-14 15:23:10 -07:00
Rasmus Munk Larsen
d2e95492e7 Merge upstream updates. 2016-04-14 13:59:50 -07:00
Rasmus Munk Larsen
235e83aba6 Eigen cost model part 1. This implements a basic recursive framework to estimate the cost of evaluating tensor expressions. 2016-04-14 13:57:35 -07:00
Benoit Steiner
5912ad877c Silenced a compilation warning 2016-04-14 11:40:14 -07:00
Benoit Steiner
c7167fee0e Added support for fp16 to the sigmoid function 2016-04-14 10:08:33 -07:00
Benoit Steiner
3b76df64fc Defer the decision to vectorize tensor CUDA code to the meta kernel. This makes it possible to decide to vectorize or not depending on the capability of the target cuda architecture. In particular, this enables us to vectorize the processing of fp16 when running on device of capability >= 5.3 2016-04-12 10:58:51 -07:00
Benoit Steiner
7d5b17087f Added missing EIGEN_DEVICE_FUNC to the tensor conversion code. 2016-04-07 20:01:19 -07:00
Benoit Steiner
48308ed801 Added support for isinf, isnan, and isfinite checks to the tensor api 2016-04-07 09:48:36 -07:00
Benoit Steiner
cfb34d808b Fixed a possible integer overflow. 2016-04-07 08:46:52 -07:00
Benoit Steiner
7be1eaad1e Fixed typos in the implementation of the zeta and polygamma ops. 2016-04-06 14:15:37 -07:00
tillahoffmann
726bd5f077 Merged eigen/eigen into default 2016-04-05 18:21:05 +01:00
Gael Guennebaud
4d7e230d2f bug #1189: fix pow/atan2 compilation for AutoDiffScalar 2016-04-05 14:49:41 +02:00
Till Hoffmann
80eba21ad0 Merge upstream. 2016-04-01 18:18:49 +01:00
Till Hoffmann
ffd770ce94 Fixed CUDA signature. 2016-04-01 17:58:24 +01:00
tillahoffmann
49960adbdd Merged eigen/eigen into default 2016-04-01 14:36:15 +01:00
Till Hoffmann
57239f4a81 Added polygamma function. 2016-04-01 14:35:21 +01:00
Till Hoffmann
dd5d390daf Added zeta function. 2016-04-01 13:32:29 +01:00
Benoit Steiner
3da495e6b9 Relaxed the condition used to gate the fft code. 2016-03-31 18:11:51 -07:00
Benoit Steiner
0f5cc504fe Properly gate the fft code 2016-03-31 12:59:39 -07:00
Benoit Steiner
af4ef540bf Fixed a off-by-one bug in a debug assertion 2016-03-30 18:37:19 -07:00
Benoit Steiner
791e5cfb69 Added NumTraits for type2index. 2016-03-30 18:36:36 -07:00
Benoit Steiner
483aaad10a Fixed compilation warning 2016-03-30 17:08:13 -07:00
Benoit Steiner
1b40abbf99 Added missing assignment operator to the TensorUInt128 class, and made misc small improvements 2016-03-30 13:17:03 -07:00
Benoit Steiner
aa45ad2aac Fixed the formatting of the README. 2016-03-29 15:06:13 -07:00
Benoit Steiner
56df5ef1d7 Attempt to fix the formatting of the README 2016-03-29 15:03:38 -07:00
Benoit Steiner
c38295f0a0 Added support for fmod 2016-03-28 15:53:02 -07:00
Benoit Steiner
6772f653c3 Made it possible to customize the threadpool 2016-03-28 10:01:04 -07:00
Benoit Steiner
1bc81f7889 Fixed compilation warnings on arm 2016-03-28 09:21:04 -07:00
Benoit Steiner
78f83d6f6a Prevent potential overflow. 2016-03-28 09:18:04 -07:00
Benoit Steiner
74f91ed06c Improved support for integer modulo 2016-03-25 17:21:56 -07:00
Benoit Steiner
41434a8a85 Avoid unnecessary conversions 2016-03-23 16:52:38 -07:00
Benoit Steiner
92693b50eb Fixed compilation warning 2016-03-23 16:40:36 -07:00
Benoit Steiner
393bc3b16b Added comment 2016-03-23 16:22:15 -07:00
Christoph Hertzberg
9642fd7a93 Replace all M_PI by EIGEN_PI and add a check to the testsuite. 2016-03-23 15:37:45 +01:00
Benoit Steiner
3d1e857327 Fixed compilation error 2016-03-22 15:48:28 -07:00
Benoit Steiner
de7d92c259 Pulled latest updates from trunk 2016-03-22 15:24:49 -07:00
Benoit Steiner
002cf0d1c9 Use a single Barrier instead of a collection of Notifications to reduce the thread synchronization overhead 2016-03-22 15:24:23 -07:00
Benoit Steiner
bc2b802751 Fixed a couple of typos 2016-03-22 14:27:34 -07:00
Benoit Steiner
6a31b7be3e Avoid using std::vector whenever possible 2016-03-22 14:02:50 -07:00
Benoit Steiner
65a7113a36 Use an enum instead of a static const int to prevent possible link error 2016-03-22 09:33:54 -07:00
Benoit Steiner
f9ad25e4d8 Fixed contractions of 16 bit floats 2016-03-22 09:30:23 -07:00
Benoit Steiner
8ef3181f15 Worked around a constness related issue 2016-03-21 11:24:05 -07:00
Benoit Steiner
7a07d6aa2b Small cleanup 2016-03-21 11:12:17 -07:00
Benoit Steiner
e91f255301 Marked variables that's only used in debug mode as such 2016-03-21 10:02:00 -07:00
Benoit Steiner
db5c14de42 Explicitly cast the default value into the proper scalar type. 2016-03-21 09:52:58 -07:00
Benoit Steiner
8e03333f06 Renamed some class members to make the code more readable. 2016-03-18 15:21:04 -07:00
Benoit Steiner
6c08943d9f Fixed a bug in the padding of extracted image patches. 2016-03-18 15:19:10 -07:00
Benoit Steiner
9a7ece9caf Worked around constness issue 2016-03-18 10:38:29 -07:00
Benoit Steiner
edc679f6c6 Fixed compilation warning 2016-03-18 07:12:34 -07:00
Benoit Steiner
70eb70f5f8 Avoid mutable class members when possible 2016-03-17 21:47:18 -07:00
Benoit Steiner
95b8961a9b Allocate the mersenne twister used by the random number generators on the heap instead of on the stack since they tend to keep a lot of state (i.e. about 5k) around. 2016-03-17 15:23:51 -07:00
Benoit Steiner
f7329619da Fix bug in tensor contraction. The code assumes that contraction axis indices for the LHS (after possibly swapping to ColMajor!) is increasing. Explicitly sort the contraction axis pairs to make it so. 2016-03-17 15:08:02 -07:00
Christoph Hertzberg
46aa9772fc Merged in ebrevdo/eigen (pull request PR-169)
Bugfixes to cuda tests, igamma & igammac implemented, & tests for digamma, igamma, igammac on CPU & GPU.
2016-03-16 21:59:08 +01:00
Benoit Steiner
b72ffcb05e Made the comparison of Eigen::array GPU friendly 2016-03-11 16:37:59 -08:00
Benoit Steiner
25f69cb932 Added a comparison operator for Eigen::array
Alias Eigen::array to std::array when compiling with Visual Studio 2015
2016-03-11 15:20:37 -08:00
Benoit Steiner
86d45a3c83 Worked around visual studio compilation warnings. 2016-03-09 21:29:39 -08:00
Benoit Steiner
8fd4241377 Fixed a typo. 2016-03-10 02:28:46 +00:00
Benoit Steiner
a685a6beed Made the list reductions less ambiguous. 2016-03-09 17:41:52 -08:00
Benoit Steiner
3149b5b148 Avoid implicit cast 2016-03-09 17:35:17 -08:00
Benoit Steiner
b2100b83ad Made sure to include the <random> header file when compiling with visual studio 2016-03-09 16:03:16 -08:00
Benoit Steiner
f05fb449b8 Avoid unnecessary conversion from 32bit int to 64bit unsigned int 2016-03-09 15:27:45 -08:00
Benoit Steiner
1d566417d2 Enable the random number generators when compiling with visual studio 2016-03-09 10:55:11 -08:00
Benoit Steiner
b084133dbf Fixed the integer division code on windows 2016-03-09 07:06:36 -08:00
Benoit Steiner
6d30683113 Fixed static assertion 2016-03-08 21:02:51 -08:00
Eugene Brevdo
5e7de771e3 Properly fix merge issues. 2016-03-08 17:35:05 -08:00
Benoit Steiner
46177c8d64 Replace std::vector with our own implementation, as using the stl when compiling with nvcc and avx enabled leads to many issues. 2016-03-08 16:37:27 -08:00
Benoit Steiner
6d6413f768 Simplified the full reduction code 2016-03-08 16:02:00 -08:00
Benoit Steiner
5a427a94a9 Fixed the tensor generator code 2016-03-08 13:28:06 -08:00
Benoit Steiner
a81b88bef7 Fixed the tensor concatenation code 2016-03-08 12:30:19 -08:00
Benoit Steiner
551ff11d0d Fixed the tensor layout swapping code 2016-03-08 12:28:10 -08:00
Benoit Steiner
8768c063f5 Fixed the tensor chipping code. 2016-03-08 12:26:49 -08:00
Benoit Steiner
e09eb835db Decoupled the packet type definition from the definition of the tensor ops. All the vectorization is now defined in the tensor evaluators. This will make it possible to relialably support devices with different packet types in the same compilation unit. 2016-03-08 12:07:33 -08:00
Benoit Steiner
3b614a2358 Use NumTraits::highest() and NumTraits::lowest() instead of the std::numeric_limits to make the tensor min and max functors more CUDA friendly. 2016-03-07 17:53:28 -08:00
Benoit Steiner
769685e74e Added the ability to pad a tensor using a non-zero value 2016-03-07 14:45:37 -08:00
Benoit Steiner
7f87cc3a3b Fix a couple of typos in the code. 2016-03-07 14:31:27 -08:00
Eugene Brevdo
5707004d6b Fix Eigen's building of sharded tests that use CUDA & more igamma/igammac bugfixes.
0. Prior to this PR, not a single sharded CUDA test was actually being *run*.
Fixed that.

GPU tests are still failing for igamma/igammac.

1. Add calls for igamma/igammac to TensorBase
2. Fix up CUDA-specific calls of igamma/igammac
3. Add unit tests for digamma, igamma, igammac in CUDA.
2016-03-07 14:08:56 -08:00
Benoit Steiner
9a54c3e32b Don't warn that msvc 2015 isn't c++11 compliant just because it doesn't claim to be. 2016-03-06 09:38:56 -08:00
Benoit Steiner
05bbca079a Turn on some of the cxx11 features when compiling with visual studio 2015 2016-03-05 10:52:08 -08:00
Benoit Steiner
23aed8f2e4 Use EIGEN_PI instead of redefining our own constant PI 2016-03-05 08:04:45 -08:00
Benoit Steiner
ec35068edc Don't rely on the M_PI constant since not all compilers provide it. 2016-03-04 16:42:38 -08:00
Benoit Steiner
60d9df11c1 Fixed the computation of leading zeros when compiling with msvc. 2016-03-04 16:27:02 -08:00
Benoit Steiner
c561eeb7bf Don't use implicit type conversions in initializer lists since not all compilers support them. 2016-03-04 14:12:45 -08:00
Benoit Steiner
2c50fc878e Fixed a typo 2016-03-04 14:09:38 -08:00
Benoit Steiner
5cf4558c0a Added support for rounding, flooring, and ceiling to the tensor api 2016-03-03 12:36:55 -08:00
Benoit Steiner
68ac5c1738 Improved the performance of large outer reductions on cuda 2016-02-29 18:11:58 -08:00
Benoit Steiner
b2075cb7a2 Made the signature of the inner and outer reducers consistent 2016-02-29 10:53:38 -08:00
Benoit Steiner
3284842045 Optimized the performance of narrow reductions on CUDA devices 2016-02-29 10:48:16 -08:00
Benoit Steiner
609b3337a7 Print some information to stderr when a CUDA kernel fails 2016-02-27 20:42:57 +00:00
Benoit Steiner
ac2e6e0d03 Properly vectorized the random number generators 2016-02-26 13:52:24 -08:00
Benoit Steiner
caa54d888f Made the TensorIndexList usable on GPU without having to use the -relaxed-constexpr compilation flag 2016-02-26 12:38:18 -08:00
Benoit Steiner
2cd32cad27 Reverted previous commit since it caused more problems than it solved 2016-02-26 13:21:44 +00:00
Benoit Steiner
d9d05dd96e Fixed handling of long doubles on aarch64 2016-02-26 04:13:58 -08:00
Benoit Steiner
c36c09169e Fixed a typo in the reduction code that could prevent large full reductionsx from running properly on old cuda devices. 2016-02-24 17:07:25 -08:00
Benoit Steiner
7a01cb8e4b Marked the And and Or reducers as stateless. 2016-02-24 16:43:01 -08:00
Benoit Steiner
1d9256f7db Updated the padding code to work with half floats 2016-02-23 05:51:22 +00:00
Benoit Steiner
72d2cf642e Deleted the coordinate based evaluation of tensor expressions, since it's hardly ever used and started to cause some issues with some versions of xcode. 2016-02-22 15:29:41 -08:00