Commit Graph

11025 Commits

Author SHA1 Message Date
David Tellenbach
c6c84ed961 Fix unused variable warning on Arm 2020-06-15 00:14:58 +02:00
Sebastien Boisvert
6228f27234 Fix #1818: SparseLU: add methods nnzL() and nnzU()
Now this compiles without errors:

$ clang++ -I ../../ test_sparseLU.cpp -std=c++03
2020-06-11 23:49:49 +00:00
Sebastien Boisvert
39cbd6578f Fix #1911: add benchmark for move semantics with fixed-size matrix
$ clang++ -O3 bench/bench_move_semantics.cpp -I. -std=c++11 \
        -o bench_move_semantics

$ ./bench_move_semantics
float copy semantics: 1755.97 ms
float move semantics: 55.063 ms
double copy semantics: 2457.65 ms
double move semantics: 55.034 ms
2020-06-11 23:43:25 +00:00
Antonio Sanchez
a7d2552af8 Remove HasCast and fix packetmath cast tests.
The use of the `packet_traits<>::HasCast` field is currently inconsistent with
`type_casting_traits<>`, and is unused apart from within
`test/packetmath.cpp`. In addition, those packetmath cast tests do not
currently reflect how casts are performed in practice: they ignore the
`SrcCoeffRatio` and `TgtCoeffRatio` fields, assuming a 1:1 ratio.

Here we remove the unsed `HasCast`, and modify the packet cast tests to
better reflect their usage.
2020-06-11 17:26:56 +00:00
Sebastien Boisvert
463ec86648 Fix #1757: remove the word 'suicide' 2020-06-11 00:56:54 +00:00
ShengYang1
b5d66b5e73 Implement scalar_cmp_with_cast_op 2020-06-09 08:12:07 +08:00
Rasmus Munk Larsen
c4059ffcb6 Fix static analyzer warning in SelfadjointProduct.h.
Fix compiler warnings in GeneralBlockPanelKernel.h.
2020-06-08 11:48:44 -07:00
Thales Sabino
1fcaaf460f Update FindComputeCpp.cmake to fix build problems on Windows
- Use standard types in SYCL/PacketMath.h to avoid compilation problems on Windows
- Add EIGEN_HAS_CONSTEXPR to cxx11_tensor_argmax_sycl.cpp to fix build problems on Windows
2020-06-05 20:51:20 +00:00
David Tellenbach
3ce18d3c8f Revert ".gitlab-ci.yml: initial commit"
This reverts commit 95177362ed to
disable GitLab CI temporarily.
2020-06-05 22:43:49 +02:00
Rasmus Munk Larsen
c2ab36f47a Fix broken packetmath test for logistic on Arm. 2020-06-04 16:24:47 -07:00
Rasmus Munk Larsen
537e2b322f Fix typo in previous update to generic predux_any. 2020-06-04 22:25:05 +00:00
Rasmus Munk Larsen
fdc1cbdce3 Avoid implicit float equality comparison in generic predux_any, but use numext::not_equal_strict to avoid breaking builds that compile with -Werror=float-equal. 2020-06-04 22:15:56 +00:00
Rasmus Munk Larsen
daf9bbeca2 Fix compilation error in logistic packet op. 2020-06-03 00:57:41 +00:00
n0mend
6d2a9a524b Update run instructions for benchCholesky 2020-06-01 18:31:46 +00:00
Gael Guennebaud
029a76e115 Bug #1777: make the scalar and packet path consistent for the logistic function + respective unit test 2020-05-31 00:53:37 +02:00
Gael Guennebaud
99b7f7cb9c Fix #556: warnings with mingw 2020-05-31 00:39:44 +02:00
Gael Guennebaud
72782d13e0 Bug #1767: increase required cmake version to 3.5.0 2020-05-31 00:31:09 +02:00
Gael Guennebaud
867a756509 Fix #1833: compilation issue of "array!=scalar" with c++20 2020-05-30 23:53:58 +02:00
Gael Guennebaud
ab615e4114 Save one extra temporary when assigning a sparse product to a row-major sparse matrix 2020-05-30 23:15:12 +02:00
Christoph Junghans
95177362ed .gitlab-ci.yml: initial commit 2020-05-29 09:23:25 -06:00
Kan Chen
8d1302f566 Add support for PacketBlock<Packet8s,4> and PacketBlock<Packet16uc,4> ptranspose on NEON 2020-05-29 00:33:45 +00:00
Antonio Sánchez
8719b9c5bc Disable test for 32-bit systems (e.g. ARM, i386)
Both i386 and 32-bit ARM do not define __uint128_t. On most systems, if
__uint128_t is defined, then so is the macro __SIZEOF_INT128__.

https://stackoverflow.com/questions/18531782/how-to-know-if-uint128-t-is-defined1
2020-05-28 17:40:15 +00:00
Yong Tang
8e1df5b082 Fix incorrect usage of if defined(EIGEN_ARCH_PPC) => if EIGEN_ARCH_PPC
This PR tries to fix an incorrect usage of `if defined(EIGEN_ARCH_PPC)`
in `Eigen/Core` header.

In `Eigen/src/Core/util/Macros.h`, EIGEN_ARCH_PPC was explicitly defined
as either 0 or 1. As a result `if defined(EIGEN_ARCH_PPC)` will always be true.
This causes issues when building on non PPC platform and `MatrixProduct.h` is not
available.

This fix changes `if defined(EIGEN_ARCH_PPC)` => `if EIGEN_ARCH_PPC`.

Signed-off-by: Yong Tang <yong.tang.github@outlook.com>
2020-05-28 05:53:44 -07:00
Kan Chen
4e7046063b Fix #1874: it works on both MSVC 2017 and other platforms. 2020-05-21 18:42:56 +08:00
Pedro Caldeira
2d67af2d2b Add pscatter for Packet16{u}c (int8) 2020-05-20 17:29:34 -03:00
David Tellenbach
5328cd62b3 Guard usage of decltype since it's a C++11 feature
This fixes https://gitlab.com/libeigen/eigen/-/issues/1897
2020-05-20 16:04:16 +02:00
Rasmus Munk Larsen
cc86a31e20 Add guard around specialization for bool, which is only currently implemented for SSE. 2020-05-19 16:21:56 -07:00
Everton Constantino
8a7f360ec3 - Vectorizing MMA packing.
- Optimizing MMA kernel.
- Adding PacketBlock store to blas_data_mapper.
2020-05-19 19:24:11 +00:00
Rasmus Munk Larsen
a145e4adf5 Add newline at the end of StlIterators.h. 2020-05-15 20:36:00 +00:00
Gael Guennebaud
8ce9630ddb Fix #1874: workaround MSVC 2017 compilation issue. 2020-05-15 20:47:32 +02:00
Rasmus Munk Larsen
9b411757ab Add missing packet ops for bool, and make it pass the same packet op unit tests as other arithmetic types.
This change also contains a few minor cleanups:
  1. Remove packet op pnot, which is not needed for anything other than pcmp_le_or_nan,
     which can be done in other ways.
  2. Remove the "HasInsert" enum, which is no longer needed since we removed the
     corresponding packet ops.
  3. Add faster pselect op for Packet4i when SSE4.1 is supported.

Among other things, this makes the fast transposeInPlace() method available for Matrix<bool>.

Run on ************** (72 X 2994 MHz CPUs); 2020-05-09T10:51:02.372347913-07:00
CPU: Intel Skylake Xeon with HyperThreading (36 cores) dL1:32KB dL2:1024KB dL3:24MB
Benchmark                        Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------------
BM_TransposeInPlace<float>/4            9.77           9.77    71670320
BM_TransposeInPlace<float>/8           21.9           21.9     31929525
BM_TransposeInPlace<float>/16          66.6           66.6     10000000
BM_TransposeInPlace<float>/32         243            243        2879561
BM_TransposeInPlace<float>/59         844            844         829767
BM_TransposeInPlace<float>/64         933            933         750567
BM_TransposeInPlace<float>/128       3944           3945         177405
BM_TransposeInPlace<float>/256      16853          16853          41457
BM_TransposeInPlace<float>/512     204952         204968           3448
BM_TransposeInPlace<float>/1k     1053889        1053861            664
BM_TransposeInPlace<bool>/4            14.4           14.4     48637301
BM_TransposeInPlace<bool>/8            36.0           36.0     19370222
BM_TransposeInPlace<bool>/16           31.5           31.5     22178902
BM_TransposeInPlace<bool>/32          111            111        6272048
BM_TransposeInPlace<bool>/59          626            626        1000000
BM_TransposeInPlace<bool>/64          428            428        1632689
BM_TransposeInPlace<bool>/128        1677           1677         417377
BM_TransposeInPlace<bool>/256        7126           7126          96264
BM_TransposeInPlace<bool>/512       29021          29024          24165
BM_TransposeInPlace<bool>/1k       116321         116330           6068
2020-05-14 22:39:13 +00:00
Felipe Attanasio
d640276d31 Added support for reverse iterators for Vectorwise operations. 2020-05-14 22:38:20 +00:00
Christopher Moore
fa8fd4b4d5 Indexed view should have RowMajorBit when there is staticly a single row 2020-05-14 22:11:19 +00:00
Christopher Moore
a187ffea28 Resolve "IndexedView of a vector should allow linear access" 2020-05-13 19:24:42 +00:00
Mark Eberlein
ba9d18b938 Add KLU support to spbenchsolver 2020-05-11 21:50:27 +00:00
Pedro Caldeira
5fdc179241 Altivec template functions to better code reusability 2020-05-11 21:04:51 +00:00
mehdi-goli
d3e81db6c5 Eigen moved the scanLauncehr function inside the internal namespace.
This commit applies the following changes:
    - Moving the `scamLauncher` specialization inside internal namespace to fix compiler crash on TensorScan for SYCL backend.
    - Replacing  `SYCL/sycl.hpp` to `CL/sycl.hpp` in order to follow SYCL 1.2.1 standard.
    - minor fixes: commenting out an unused variable to avoid compiler warnings.
2020-05-11 16:10:33 +01:00
Rasmus Munk Larsen
c1d944dd91 Remove packet ops pinsertfirst and pinsertlast that are only used in a single place, and can be replaced by other ops when constructing the first/final packet in linspaced_op_impl::packetOp.
I cannot measure any performance changes for SSE, AVX, or AVX512.

name                                 old time/op             new time/op             delta
BM_LinSpace<float>/1                 1.63ns ± 0%             1.63ns ± 0%   ~             (p=0.762 n=5+5)
BM_LinSpace<float>/8                 4.92ns ± 3%             4.89ns ± 3%   ~             (p=0.421 n=5+5)
BM_LinSpace<float>/64                34.6ns ± 0%             34.6ns ± 0%   ~             (p=0.841 n=5+5)
BM_LinSpace<float>/512                217ns ± 0%              217ns ± 0%   ~             (p=0.421 n=5+5)
BM_LinSpace<float>/4k                1.68µs ± 0%             1.68µs ± 0%   ~             (p=1.000 n=5+5)
BM_LinSpace<float>/32k               13.3µs ± 0%             13.3µs ± 0%   ~             (p=0.905 n=5+4)
BM_LinSpace<float>/256k               107µs ± 0%              107µs ± 0%   ~             (p=0.841 n=5+5)
BM_LinSpace<float>/1M                 427µs ± 0%              427µs ± 0%   ~             (p=0.690 n=5+5)
2020-05-08 15:41:50 -07:00
David Tellenbach
5c4e19fbe7 Possibility to specify user-defined default cache sizes for GEBP kernel
Some architectures have no convinient way to determine cache sizes at
runtime. Eigen's GEBP kernel falls back to default cache values in this
case which might not be correct in all situations.

This patch introduces three preprocessor directives

  `EIGEN_DEFAULT_L1_CACHE_SIZE`
  `EIGEN_DEFAULT_L2_CACHE_SIZE`
  `EIGEN_DEFAULT_L3_CACHE_SIZE`

to give users the possibility to set these default values explicitly.
2020-05-08 12:54:36 +02:00
Rasmus Munk Larsen
225ab040e0 Remove unused packet op "palign".
Clean up a compiler warning in c++03 mode in AVX512/Complex.h.
2020-05-07 17:14:26 -07:00
Rasmus Munk Larsen
74ec8e6618 Make size odd for transposeInPlace test to make sure we hit the scalar path. 2020-05-07 17:29:56 +00:00
Rasmus Munk Larsen
49f1aeb60d Remove traits declaring NEON vectorized casts that do not actually have packet op implementations. 2020-05-07 09:49:22 -07:00
Rasmus Munk Larsen
2fd8a5a08f Add parallelization of TensorScanOp for types without packet ops.
Clean up the code a bit and do a few micro-optimizations to improve performance for small tensors.

Benchmark numbers for Tensor<uint32_t>:

name                                                       old time/op             new time/op             delta
BM_cumSumRowReduction_1T/8   [using 1 threads]             76.5ns ± 0%             61.3ns ± 4%    -19.80%          (p=0.008 n=5+5)
BM_cumSumRowReduction_1T/64  [using 1 threads]             2.47µs ± 1%             2.40µs ± 1%     -2.77%          (p=0.008 n=5+5)
BM_cumSumRowReduction_1T/256 [using 1 threads]             39.8µs ± 0%             39.6µs ± 0%     -0.60%          (p=0.008 n=5+5)
BM_cumSumRowReduction_1T/4k  [using 1 threads]             13.9ms ± 0%             13.4ms ± 1%     -4.19%          (p=0.008 n=5+5)
BM_cumSumRowReduction_2T/8   [using 2 threads]             76.8ns ± 0%             59.1ns ± 0%    -23.09%          (p=0.016 n=5+4)
BM_cumSumRowReduction_2T/64  [using 2 threads]             2.47µs ± 1%             2.41µs ± 1%     -2.53%          (p=0.008 n=5+5)
BM_cumSumRowReduction_2T/256 [using 2 threads]             39.8µs ± 0%             34.7µs ± 6%    -12.74%          (p=0.008 n=5+5)
BM_cumSumRowReduction_2T/4k  [using 2 threads]             13.8ms ± 1%              7.2ms ± 6%    -47.74%          (p=0.008 n=5+5)
BM_cumSumRowReduction_8T/8   [using 8 threads]             76.4ns ± 0%             61.8ns ± 3%    -19.02%          (p=0.008 n=5+5)
BM_cumSumRowReduction_8T/64  [using 8 threads]             2.47µs ± 1%             2.40µs ± 1%     -2.84%          (p=0.008 n=5+5)
BM_cumSumRowReduction_8T/256 [using 8 threads]             39.8µs ± 0%             28.3µs ±11%    -28.75%          (p=0.008 n=5+5)
BM_cumSumRowReduction_8T/4k  [using 8 threads]             13.8ms ± 0%              2.7ms ± 5%    -80.39%          (p=0.008 n=5+5)
BM_cumSumColReduction_1T/8   [using 1 threads]             59.1ns ± 0%             80.3ns ± 0%    +35.94%          (p=0.029 n=4+4)
BM_cumSumColReduction_1T/64  [using 1 threads]             3.06µs ± 0%             3.08µs ± 1%       ~             (p=0.114 n=4+4)
BM_cumSumColReduction_1T/256 [using 1 threads]              175µs ± 0%              176µs ± 0%       ~             (p=0.190 n=4+5)
BM_cumSumColReduction_1T/4k  [using 1 threads]              824ms ± 1%              844ms ± 1%     +2.37%          (p=0.008 n=5+5)
BM_cumSumColReduction_2T/8   [using 2 threads]             59.0ns ± 0%             90.7ns ± 0%    +53.74%          (p=0.029 n=4+4)
BM_cumSumColReduction_2T/64  [using 2 threads]             3.06µs ± 0%             3.10µs ± 0%     +1.08%          (p=0.016 n=4+5)
BM_cumSumColReduction_2T/256 [using 2 threads]              176µs ± 0%              189µs ±18%       ~             (p=0.151 n=5+5)
BM_cumSumColReduction_2T/4k  [using 2 threads]              836ms ± 2%              611ms ±14%    -26.92%          (p=0.008 n=5+5)
BM_cumSumColReduction_8T/8   [using 8 threads]             59.3ns ± 2%             90.6ns ± 0%    +52.79%          (p=0.008 n=5+5)
BM_cumSumColReduction_8T/64  [using 8 threads]             3.07µs ± 0%             3.10µs ± 0%     +0.99%          (p=0.016 n=5+4)
BM_cumSumColReduction_8T/256 [using 8 threads]              176µs ± 0%               80µs ±19%    -54.51%          (p=0.008 n=5+5)
BM_cumSumColReduction_8T/4k  [using 8 threads]              827ms ± 2%              180ms ±14%    -78.24%          (p=0.008 n=5+5)
2020-05-06 14:48:37 -07:00
Rasmus Munk Larsen
0e59f786e1 Fix accidental copy of loop variable. 2020-05-05 21:35:38 +00:00
Rasmus Munk Larsen
7b76c85daf Vectorize and parallelize TensorScanOp.
TensorScanOp is used in TensorFlow for a number of operations, such as cumulative logexp reduction and cumulative sum and product reductions.

The benchmarks numbers below are for cumulative row- and column reductions of NxN matrices.

name                                                         old time/op             new time/op     delta
BM_cumSumRowReduction_1T/4    [using 1 threads ]             25.1ns ± 1%             35.2ns ± 1%    +40.45%
BM_cumSumRowReduction_1T/8    [using 1 threads ]             73.4ns ± 0%             82.7ns ± 3%    +12.74%
BM_cumSumRowReduction_1T/32   [using 1 threads ]              988ns ± 0%              832ns ± 0%    -15.77%
BM_cumSumRowReduction_1T/64   [using 1 threads ]             4.07µs ± 2%             3.47µs ± 0%    -14.70%
BM_cumSumRowReduction_1T/128  [using 1 threads ]             18.0µs ± 0%             16.8µs ± 0%     -6.58%
BM_cumSumRowReduction_1T/512  [using 1 threads ]              287µs ± 0%              281µs ± 0%     -2.22%
BM_cumSumRowReduction_1T/2k   [using 1 threads ]             4.78ms ± 1%             4.78ms ± 2%       ~
BM_cumSumRowReduction_1T/10k  [using 1 threads ]              117ms ± 1%              117ms ± 1%       ~
BM_cumSumRowReduction_8T/4    [using 8 threads ]             25.0ns ± 0%             35.2ns ± 0%    +40.82%
BM_cumSumRowReduction_8T/8    [using 8 threads ]             77.2ns ±16%             81.3ns ± 0%       ~
BM_cumSumRowReduction_8T/32   [using 8 threads ]              988ns ± 0%              833ns ± 0%    -15.67%
BM_cumSumRowReduction_8T/64   [using 8 threads ]             4.08µs ± 2%             3.47µs ± 0%    -14.95%
BM_cumSumRowReduction_8T/128  [using 8 threads ]             18.0µs ± 0%             17.3µs ±10%       ~
BM_cumSumRowReduction_8T/512  [using 8 threads ]              287µs ± 0%               58µs ± 6%    -79.92%
BM_cumSumRowReduction_8T/2k   [using 8 threads ]             4.79ms ± 1%             0.64ms ± 1%    -86.58%
BM_cumSumRowReduction_8T/10k  [using 8 threads ]              117ms ± 1%               18ms ± 6%    -84.50%

BM_cumSumColReduction_1T/4    [using 1 threads ]             23.9ns ± 0%             33.4ns ± 1%    +39.68%
BM_cumSumColReduction_1T/8    [using 1 threads ]             71.6ns ± 1%             49.1ns ± 3%    -31.40%
BM_cumSumColReduction_1T/32   [using 1 threads ]              973ns ± 0%              165ns ± 2%    -83.10%
BM_cumSumColReduction_1T/64   [using 1 threads ]             4.06µs ± 1%             0.57µs ± 1%    -85.94%
BM_cumSumColReduction_1T/128  [using 1 threads ]             33.4µs ± 1%              4.1µs ± 1%    -87.67%
BM_cumSumColReduction_1T/512  [using 1 threads ]             1.72ms ± 4%             0.21ms ± 5%    -87.91%
BM_cumSumColReduction_1T/2k   [using 1 threads ]              119ms ±53%               11ms ±35%    -90.42%
BM_cumSumColReduction_1T/10k  [using 1 threads ]              1.59s ±67%              0.35s ±49%    -77.96%
BM_cumSumColReduction_8T/4    [using 8 threads ]             23.8ns ± 0%             33.3ns ± 0%    +40.06%
BM_cumSumColReduction_8T/8    [using 8 threads ]             71.6ns ± 1%             49.2ns ± 5%    -31.33%
BM_cumSumColReduction_8T/32   [using 8 threads ]             1.01µs ±12%             0.17µs ± 3%    -82.93%
BM_cumSumColReduction_8T/64   [using 8 threads ]             4.15µs ± 4%             0.58µs ± 1%    -86.09%
BM_cumSumColReduction_8T/128  [using 8 threads ]             33.5µs ± 0%              4.1µs ± 4%    -87.65%
BM_cumSumColReduction_8T/512  [using 8 threads ]             1.71ms ± 3%             0.06ms ±16%    -96.21%
BM_cumSumColReduction_8T/2k   [using 8 threads ]             97.1ms ±14%              3.0ms ±23%    -96.88%
BM_cumSumColReduction_8T/10k  [using 8 threads ]              1.97s ± 8%              0.06s ± 2%    -96.74%
2020-05-05 00:19:43 +00:00
Xiaoxiang Cao
a74a278abd Fix confusing template param name for Stride fwd decl. 2020-04-30 01:43:05 +00:00
Rasmus Munk Larsen
923ee9aba3 Fix the embarrassingly incomplete fix to the embarrassing bug in blocked transpose. 2020-04-29 17:27:36 +00:00
Rasmus Munk Larsen
a32923a439 Fix (embarrassing) bug in blocked transpose. 2020-04-29 17:02:27 +00:00
Rasmus Munk Larsen
1e41406c36 Add missing transpose in cleanup loop. Without it, we trip an assertion in debug mode. 2020-04-29 01:30:51 +00:00
Rasmus Munk Larsen
fbe7916c55 Fix compilation error with Clang on Android: _mm_extract_epi64 fails to compile. 2020-04-29 00:58:41 +00:00