The namespace declaration for googlehash is a configurable macro that
can be disabled. In particular, it is disabled within google, causing
compile errors since `dense_hash_map`/`sparse_hash_map` are then in
the global namespace instead of in `::google`.
Here we play a bit of gynastics to allow for both `google::*_hash_map`
and `*_hash_map`, while limiting namespace polution. Symbols within
the `::google` namespace are imported into `Eigen::google`.
We also remove checks based on `_SPARSE_HASH_MAP_H_`, as this is
fragile, and instead require `EIGEN_GOOGLEHASH_SUPPORT` to be
defined.
The issue was discovered when the GPU scan unit test was run and resulted in a segmentation fault.
The segmantation fault occurred because the unit test allocated GPU memory and passed a pointer to that memory to the computation that it presumed would execute on the GPU.
But because of the issue, the computation was scheduled to execute on the CPU so a situation was constructed where the CPU attempted to access a GPU memory location.
The fix expands the GPU specific ScanLauncher specialization to handle cases where vectorization is enabled.
Previously, the GPU specialization is chosen only if Vectorization is not used.
The original swap approach leads to potential undefined behavior (reading
uninitialized memory) and results in unnecessary copying of data for static
storage.
Here we pass down the move assignment to the underlying storage. Static
storage does a one-way copy, dynamic storage does a swap.
Modified the tests to no longer read from the moved-from matrix/tensor,
since that can lead to UB. Added a test to ensure we do not access
uninitialized memory in a move.
Fixes: #2119
The macro `__cplusplus` is not defined correctly in MSVC unless building
with the the `/Zc:__cplusplus` flag. Instead, it defines `_MSVC_LANG` to the
specified c++ standard version number.
Here we introduce `EIGEN_CPLUSPLUS` which will contain the c++ version
number both for MSVC and otherwise. This simplifies checks for supported
features.
Also replaced most instances of standard version checking via `__cplusplus`
with the existing `EIGEN_COMP_CXXVER` macro for better clarity.
Fixes: #2170
1.Only computing about half of the factors and use complex conjugate symmetry for the rest instead of all to save time.
2.All twiddles are calculated in double because that gives the maximum achievable precision when doing float transforms.
3.Reducing all angles to the range 0<angle<pi/4 which gives even more precision.
CMake complains that the package name does not match when the case
differs, e.g.:
```
CMake Warning (dev) at /usr/share/cmake-3.18/Modules/FindPackageHandleStandardArgs.cmake:273 (message):
The package name passed to `find_package_handle_standard_args` (UMFPACK)
does not match the name of the calling package (Umfpack). This can lead to
problems in calling code that expects `find_package` result variables
(e.g., `_FOUND`) to follow a certain pattern.
Call Stack (most recent call first):
cmake/FindUmfpack.cmake:50 (find_package_handle_standard_args)
bench/spbench/CMakeLists.txt:24 (find_package)
This warning is for project developers. Use -Wno-dev to suppress it.
```
Here we rename the libraries to match their true cases.
Originating from
[this SO issue](https://stackoverflow.com/questions/65901014/how-to-solve-this-all-error-2-in-this-case),
some win32 compilers define `__int32` as a `long`, but MinGW defines
`std::int32_t` as an `int`, leading to a type conflict.
To avoid this, we remove the custom `typedef` definitions for win32. The
Tensor module requires C++11 anyways, so we are guaranteed to have
included `<cstdint>` already in `Eigen/Core`.
Also re-arranged the headers to only include `<cstdint>` in one place to
avoid this type of error again.
This is to support scalar `sqrt` of complex numbers `std::complex<T>` on
device, requested by Tensorflow folks.
Technically `std::complex` is not supported by NVCC on device
(though it is by clang), so the default `sqrt(std::complex<T>)` function only
works on the host. Here we create an overload to add back the
functionality.
Also modified the CMake file to add `--relaxed-constexpr` (or
equivalent) flag for NVCC to allow calling constexpr functions from
device functions, and added support for specifying compute architecture for
NVCC (was already available for clang).
Removed m_dimension as instance member of TensorStorage with
FixedDimensions and instead use the template parameter. This
means that the sizeof a pure fixed-size storage is exactly
equal to the data it is storing.
Current implementations fail to consider half-float packets, only
half-float scalars. Added specializations for packets on AVX, AVX512 and
NEON. Added tests to `special_packetmath`.
The current `special_functions` tests would fail for half and bfloat16 due to
lack of precision. The NEON tests also fail with precision issues and
due to different handling of `sqrt(inf)`, so special functions bessel, ndtri
have been disabled.
Tested with AVX, AVX512.
Allows exclusion of doc and related targets to help when using eigen via add_subdirectory().
Requested by:
https://gitlab.com/libeigen/eigen/-/issues/1842
Also required making EIGEN_TEST_BUILD_DOCUMENTATION a dependent option on EIGEN_BUILD_DOC. This ensures documentation targets are properly defined when EIGEN_TEST_BUILD_DOCUMENTATION is ON.
This fixes some gcc warnings such as:
```
Eigen/src/Core/GenericPacketMath.h:655:63: warning: implicit conversion turns floating-point number into bool: 'typename __gnu_cxx::__enable_if<__is_integer<bool>::__value, double>::__type' (aka 'double') to 'bool' [-Wimplicit-conversion-floating-point-to-bool]
Packet psqrt(const Packet& a) { EIGEN_USING_STD(sqrt); return sqrt(a); }
```
Details:
- Added `scalar_sqrt_op<bool>` (`-Wimplicit-conversion-floating-point-to-bool`).
- Added `scalar_square_op<bool>` and `scalar_cube_op<bool>`
specializations (`-Wint-in-bool-context`)
- Deprecated above specialized ops for bool.
- Modified `cxx11_tensor_block_eval` to specialize generator for
booleans (`-Wint-in-bool-context`) and to use `abs` instead of `square` to
avoid deprecated bool ops.
Multiplication of column-major `DynamicSparseMatrix`es involves three
temporaries:
- two for transposing twice to sort the coefficients
(`ConservativeSparseSparseProduct.h`, L160-161)
- one for a final copy assignment (`SparseAssign.h`, L108)
The latter is avoided in an optimization for `SparseMatrix`.
Since `DynamicSparseMatrix` is deprecated in favor of `SparseMatrix`, it's not
worth the effort to optimize further, so I simply disabled counting
temporaries via a macro.
Note that due to the inclusion of `sparse_product.cpp`, the `sparse_extra`
tests actually re-run all the original `sparse_product` tests as well.
We may want to simply drop the `DynamicSparseMatrix` tests altogether, which
would eliminate the test duplication.
Related to #2048
The existing `TensorRandom.h` implementation makes the assumption that
`half` (`bfloat16`) has a `uint16_t` member `x` (`value`), which is not
always true. This currently fails on arm64, where `x` has type `__fp16`.
Added `bit_cast` specializations to allow casting to/from `uint16_t`
for both `half` and `bfloat16`. Also added tests in
`half_float`, `bfloat16_float`, and `cxx11_tensor_random` to catch
these errors in the future.
The `OpenGLSupport` module contains mostly deprecated features, and the
test is highly GL context-dependent, relies on deprecated GLUT, and
requires a display. Until the module is updated to support modern
OpenGL and the test to use newer windowing frameworks (e.g. GLFW)
it's probably best to disable the test by default.
The test can be enabled with `cmake -DEIGEN_TEST_OPENGL=ON`.
See #2053 for more details.
The existing test fails on several systems due to GL runtime version mismatches,
the use of deprecated features, and memory errors due to improper use of GLUT.
The test was modified to:
- Run within a display function, allowing proper GLUT cleanup.
- Generate dynamic shaders with a supported GLSL version string and output variables.
- Report shader compilation errors.
- Check GL context version before launching version-specific tests.
Note that most of the existing `OpenGLSupport` module and tests rely on deprecated
features (e.g. fixed-function pipeline). The test was modified to allow it to
pass on various systems. We might want to consider removing the module or re-writing
it entirely to support modern OpenGL. This is beyond the scope of this patch.
Testing of legacy GL (for platforms that support it) can be enabled by defining
`EIGEN_LEGACY_OPENGL`. Otherwise, the test will try to create a modern context.
Tested on
- MacBook Air (2019), macOS Catalina 10.15.7 (OpenGL 2.1, 4.1)
- Debian 10.6, NVidia Quadro K1200 (OpenGL 3.1, 3.3)
Starting with ROCm 4.0, the `hipconfig --platform` command will return `amd` (prior return value was `hcc`). Updating the CMakeLists.txt files in the test dirs to account for this change.