Commit Graph

2342 Commits

Author SHA1 Message Date
Antonio Sanchez
0eba8a1fe3 Clean up gpu device properties.
Made a class and singleton to encapsulate initialization and retrieval of
device properties.

Related to !481, which already changed the API to address a static
linkage issue.
2021-05-07 17:51:29 +00:00
Antonio Sanchez
e3b7f59659 Simplify TensorRandom and remove time-dependence.
Time-dependence prevents tests from being repeatable. This has long
been an issue with debugging the tensor tests. Removing this will allow
future tests to be repeatable in the usual way.

Also, the recently added macros in !476 are causing headaches across different
platforms. For example, checking `_XOPEN_SOURCE` is leading to multiple
ambiguous macro errors across Google, and `_DEFAULT_SOURCE`/`_SVID_SOURCE`/`_BSD_SOURCE`
are sometimes defined with values, sometimes defined as empty, and sometimes
not defined at all when they probably should be.  This is leading to
multiple build breakages.

The simplest approach is to generate a seed via
`Eigen::internal::random<uint64_t>()` if on CPU. For GPU, we use a
hash based on the current thread ID (since `rand()` isn't supported
on GPU).

Fixes #1602.
2021-05-04 13:34:49 -07:00
Turing Eret
3804ca0d90 Fix for issue with static global variables in TensorDeviceGpu.h
m_deviceProperties and m_devicePropInitialized are defined as global
statics which will define multiple copies which can cause issues if
initializeDeviceProp() is called in one translation unit and then
m_deviceProperties is used in a different translation unit. Added
inline functions getDeviceProperties() and getDevicePropInitialized()
which defines those variables as static locals. As per the C++ standard
7.1.2/4, a static local declared in an inline function always refers
to the same object, so this should be safer. Credit to Sun Chenggen
for this fix.

This fixes issue #1475.
2021-04-23 07:43:35 -06:00
Antonio Sanchez
045c0609b5 Check existence of BSD random before use.
`TensorRandom` currently relies on BSD `random()`, which is not always
available.  The [linux manpage](https://man7.org/linux/man-pages/man3/srandom.3.html)
gives the glibc condition:
```
_XOPEN_SOURCE >= 500
               || /* Glibc since 2.19: */ _DEFAULT_SOURCE
	       || /* Glibc <= 2.19: */ _SVID_SOURCE ||  _BSD_SOURCE
```
In particular, this was failing to compile for MinGW via msys2. If not
available, we fall back to using `rand()`.
2021-04-22 20:42:12 +00:00
Antonio Sanchez
69adf26aa3 Modify googlehash use to account for namespace issues.
The namespace declaration for googlehash is a configurable macro that
can be disabled.  In particular, it is disabled within google, causing
compile errors since `dense_hash_map`/`sparse_hash_map` are then in
the global namespace instead of in `::google`.

Here we play a bit of gynastics to allow for both `google::*_hash_map`
and `*_hash_map`, while limiting namespace polution.  Symbols within
the `::google` namespace are imported into `Eigen::google`.

We also remove checks based on `_SPARSE_HASH_MAP_H_`, as this is
fragile, and instead require `EIGEN_GOOGLEHASH_SUPPORT` to be
defined.
2021-04-12 19:00:39 -07:00
Rasmus Munk Larsen
a2c0542010 Fix typo in TensorDimensions.h 2021-04-12 18:59:56 +00:00
Jens Wehner
f6fc66aa75 fixed doxygen for unsupported iterative solver module 2021-04-11 16:26:14 +00:00
Rohit Santhanam
2859db0220 This fixes an issue where the compiler was not choosing the GPU specific specialization of ScanLauncher.
The issue was discovered when the GPU scan unit test was run and resulted in a segmentation fault.

The segmantation fault occurred because the unit test allocated GPU memory and passed a pointer to that memory to the computation that it presumed would execute on the GPU.

But because of the issue, the computation was scheduled to execute on the CPU so a situation was constructed where the CPU attempted to access a GPU memory location.

The fix expands the GPU specific ScanLauncher specialization to handle cases where vectorization is enabled.

Previously, the GPU specialization is chosen only if Vectorization is not used.
2021-04-08 15:14:48 +00:00
Steve Bronder
e7b8643d70 Revert "Revert "Adds EIGEN_CONSTEXPR and EIGEN_NOEXCEPT to rows(), cols(), innerStride(), outerStride(), and size()""
This reverts commit 5f0b4a4010.
2021-03-24 18:14:56 +00:00
Jens Wehner
c0a889890f Fixed output of complex matrices 2021-03-15 21:51:55 +00:00
Antonio Sanchez
543e34ab9d Re-implement move assignments.
The original swap approach leads to potential undefined behavior (reading
uninitialized memory) and results in unnecessary copying of data for static
storage.

Here we pass down the move assignment to the underlying storage.  Static
storage does a one-way copy, dynamic storage does a swap.

Modified the tests to no longer read from the moved-from matrix/tensor,
since that can lead to UB. Added a test to ensure we do not access
uninitialized memory in a move.

Fixes: #2119
2021-03-10 16:55:20 +00:00
Antonio Sanchez
2468253c9a Define EIGEN_CPLUSPLUS and replace most __cplusplus checks.
The macro `__cplusplus` is not defined correctly in MSVC unless building
with the the `/Zc:__cplusplus` flag. Instead, it defines `_MSVC_LANG` to the
specified c++ standard version number.

Here we introduce `EIGEN_CPLUSPLUS` which will contain the c++ version
number both for MSVC and otherwise.  This simplifies checks for supported
features.

Also replaced most instances of standard version checking via `__cplusplus`
with the existing `EIGEN_COMP_CXXVER` macro for better clarity.

Fixes: #2170
2021-03-05 18:33:18 +00:00
David Tellenbach
5f0b4a4010 Revert "Adds EIGEN_CONSTEXPR and EIGEN_NOEXCEPT to rows(), cols(), innerStride(), outerStride(), and size()"
This reverts commit 6cbb3038ac because it
breaks clang-10 builds on x86 and aarch64 when C++11 is enabled.
2021-03-05 13:16:43 +01:00
Steve Bronder
6cbb3038ac Adds EIGEN_CONSTEXPR and EIGEN_NOEXCEPT to rows(), cols(), innerStride(), outerStride(), and size() 2021-03-04 18:58:08 +00:00
Eugene Zhulenev
a6601070f2 Add log2 operation to TensorBase 2021-03-04 00:13:36 +00:00
Christoph Hertzberg
2660d01fa7 Inherit from no_assignment_operator to avoid implicit copy constructor warnings
(cherry picked from commit 9bbb7ea4b54b1f307863be4ed8d105c38cdefe50)
2021-02-27 18:44:26 +01:00
Christoph Hertzberg
a3521d743c Fix some enum-enum conversion warnings
(cherry picked from commit 838f3d8ce22a5549ef10c7386fb03040721749a0)
2021-02-27 18:44:26 +01:00
Christoph Hertzberg
81b5fe2f0a ReturnByValue is already non-copyable
(cherry picked from commit abbf95045009619f37bd92b45433eedbfcbe41cf)
2021-02-27 18:44:26 +01:00
Christoph Hertzberg
4fb3459a23 Fix double-promotion warnings
(cherry picked from commit c22c103e932e511e96645186831363585a44b7a3)
2021-02-27 18:44:26 +01:00
Jens Wehner
4bfcee47b9 Idrs iterative linear solver 2021-02-27 12:09:33 +00:00
Rasmus Munk Larsen
f284c8592b Don't crash when attempting to slice an empty tensor. 2021-02-24 18:12:51 -08:00
Guoqiang QI
f44197fabd Some improvements for kissfft from Martin Reinecke(pocketfft author):
1.Only computing about half of the factors and use complex conjugate symmetry for the rest instead of all to save time.
2.All twiddles are calculated in double because that gives the maximum achievable precision when doing float transforms.
3.Reducing all angles to the range 0<angle<pi/4 which gives even more precision.
2021-02-24 21:36:47 +00:00
Antonio Sanchez
5f9cfb2529 Add missing adolc isinf/isnan.
Also modified cmake/FindAdolc.cmake to eliminate warnings, and added
search paths to match install layout.

Fixed: #2157
2021-02-19 22:26:56 +00:00
frgossen
33e0af0130 Return nan at poles of polygamma, digamma, and zeta if limit is not defined 2021-02-19 16:35:11 +00:00
David Tellenbach
36200b7855 Remove vim specific comments to recognoize correct file-type.
As discussed in #2143 we remove editor specific comments.
2021-02-09 09:13:09 +01:00
Ralf Hannemann-Tamas
984d010b7b add specialization of check_sparse_solving() for SuperLU solver, in order to test adjoint and transpose solves 2021-02-08 22:00:31 +00:00
Antonio Sanchez
3f4684f87d Include <cstdint> in one place, remove custom typedefs
Originating from
[this SO issue](https://stackoverflow.com/questions/65901014/how-to-solve-this-all-error-2-in-this-case),
some win32 compilers define `__int32` as a `long`, but MinGW defines
`std::int32_t` as an `int`, leading to a type conflict.

To avoid this, we remove the custom `typedef` definitions for win32.  The
Tensor module requires C++11 anyways, so we are guaranteed to have
included `<cstdint>` already in `Eigen/Core`.

Also re-arranged the headers to only include `<cstdint>` in one place to
avoid this type of error again.
2021-01-26 14:23:05 -08:00
David Tellenbach
660c6b857c Remove std::cerr in iterative solver since we don't have iostream.
This fixes #2123
2021-01-21 11:40:05 +01:00
Maozhou, Ge
21a8a2487c fix paddings of TensorVolumePatchOp 2021-01-15 11:51:49 +08:00
Antonio Sanchez
070d303d56 Add CUDA complex sqrt.
This is to support scalar `sqrt` of complex numbers `std::complex<T>` on
device, requested by Tensorflow folks.

Technically `std::complex` is not supported by NVCC on device
(though it is by clang), so the default `sqrt(std::complex<T>)` function only
works on the host. Here we create an overload to add back the
functionality.

Also modified the CMake file to add `--relaxed-constexpr` (or
equivalent) flag for NVCC to allow calling constexpr functions from
device functions, and added support for specifying compute architecture for
NVCC (was already available for clang).
2020-12-22 23:25:23 -08:00
Turing Eret
19e6496ce0 Replace call to FixedDimensions() with a singleton instance of
FixedDimensions.
2020-12-16 07:34:44 -07:00
Turing Eret
bc7d1599fb TensorStorage with FixedDimensions now has zero instance memory overhead.
Removed m_dimension as instance member of TensorStorage with
FixedDimensions and instead use the template parameter. This
means that the sizeof a pure fixed-size storage is exactly
equal to the data it is storing.
2020-12-14 07:19:34 -07:00
Antonio Sanchez
2dbac2f99f Fix bad NEON fp16 check 2020-12-04 13:42:18 -08:00
Antonio Sanchez
e2f21465fe Special function implementations for half/bfloat16 packets.
Current implementations fail to consider half-float packets, only
half-float scalars.  Added specializations for packets on AVX, AVX512 and
NEON.  Added tests to `special_packetmath`.

The current `special_functions` tests would fail for half and bfloat16 due to
lack of precision. The NEON tests also fail with precision issues and
due to different handling of `sqrt(inf)`, so special functions bessel, ndtri
have been disabled.

Tested with AVX, AVX512.
2020-12-04 10:16:29 -08:00
Rasmus Munk Larsen
71c85df4c1 Clean up the Tensor header and get rid of the EIGEN_SLEEP macro. 2020-12-02 11:04:04 -08:00
Antonio Sanchez
17268b155d Add bit_cast for half/bfloat to/from uint16_t, fix TensorRandom
The existing `TensorRandom.h` implementation makes the assumption that
`half` (`bfloat16`) has a `uint16_t` member `x` (`value`), which is not
always true. This currently fails on arm64, where `x` has type `__fp16`.
Added `bit_cast` specializations to allow casting to/from `uint16_t`
for both `half` and `bfloat16`.  Also added tests in
`half_float`, `bfloat16_float`, and `cxx11_tensor_random` to catch
these errors in the future.
2020-11-18 20:32:35 +00:00
Antonio Sanchez
3669498f5a Fix rule-of-3 for the Tensor module.
Adds copy constructors to Tensor ops, inherits assignment operators from
`TensorBase`.

Addresses #1863
2020-11-18 18:14:53 +00:00
mehdi-goli
a725a3233c [SYCL clean up the code] : removing exrta #pragma unroll in SYCL which was causing issues in embeded systems 2020-10-28 08:34:49 +00:00
Rasmus Munk Larsen
61fc78bbda Get rid of nested template specialization in TensorReductionGpu.h, which was broken by c6953f799b. 2020-10-13 23:53:11 +00:00
Rasmus Munk Larsen
c6953f799b Add packet generic ops predux_fmin, predux_fmin_nan, predux_fmax, and predux_fmax_nan that implement reductions with PropagateNaN, and PropagateNumbers semantics. Add (slow) generic implementations for most reductions. 2020-10-13 21:48:31 +00:00
David Tellenbach
8f8d77b516 Add EIGEN prefix for HAS_LGAMMA_R 2020-10-08 18:32:19 +02:00
Eugene Zhulenev
2279f2c62f Use lgamma_r if it is available (update check for glibc 2.19+) 2020-10-08 00:26:45 +00:00
Rasmus Munk Larsen
b431024404 Don't make assumptions about NaN-propagation for pmin/pmax - it various across platforms.
Change test to only test for NaN-propagation for pfmin/pfmax.
2020-10-07 19:05:18 +00:00
Zhuyie
e4b24e7fb2 Fix Eigen::ThreadPool::CurrentThreadId returning wrong thread id when EIGEN_AVOID_THREAD_LOCAL and NDEBUG are defined 2020-09-25 09:36:43 +00:00
Rasmus Munk Larsen
e55182ac09 Get rid of initialization logic for blueNorm by making the computed constants static const or constexpr.
Move macro definition EIGEN_CONSTEXPR to Core and make all methods in NumTraits constexpr when EIGEN_HASH_CONSTEXPR is 1.
2020-09-18 17:38:58 +00:00
Deven Desai
603e213d13 Fixing a CUDA / P100 regression introduced by PR 181
PR 181 ( https://gitlab.com/libeigen/eigen/-/merge_requests/181 ) adds `__launch_bounds__(1024)` attribute to GPU kernels, that did not have that attribute explicitly specified.

That PR seems to cause regressions on the CUDA platform. This PR/commit makes the changes in PR 181, to be applicable for HIP only
2020-08-20 00:29:57 +00:00
Deven Desai
46f8a18567 Adding an explicit launch_bounds(1024) attribute for GPU kernels.
Starting with ROCm 3.5, the HIP compiler will change from HCC to hip-clang.

This compiler change introduce a change in the default value of the `__launch_bounds__` attribute associated with a GPU kernel. (default value means the value assumed by the compiler as the `__launch_bounds attribute__` value, when it is not explicitly specified by the user)

Currently (i.e. for HIP with ROCm 3.3 and older), the default value is 1024. That changes to 256 with ROCm 3.5 (i.e. hip-clang compiler). As a consequence of this change, if a GPU kernel with a `__luanch_bounds__` attribute of 256 is launched at runtime with a threads_per_block value > 256, it leads to a runtime error. This is leading to a couple of Eigen unit test failures with ROCm 3.5.

This commit adds an explicit `__launch_bounds(1024)__` attribute to every GPU kernel that currently does not have it explicitly specified (and hence will end up getting the default value of 256 with the change to hip-clang)
2020-08-05 01:46:34 +00:00
Rasmus Munk Larsen
b92206676c Inherit alignment trait from argument in TensorBroadcasting to avoid segfault when the argument is unaligned. 2020-07-28 19:19:37 +00:00
Antonio Sanchez
9cb8771e9c Fix tensor casts for large packets and casts to/from std::complex
The original tensor casts were only defined for
`SrcCoeffRatio`:`TgtCoeffRatio` 1:1, 1:2, 2:1, 4:1. Here we add the
missing 1:N and 8:1.

We also add casting `Eigen::half` to/from `std::complex<T>`, which
was missing to make it consistent with `Eigen:bfloat16`, and
generalize the overload to work for any complex type.

Tests were added to `basicstuff`, `packetmath`, and
`cxx11_tensor_casts` to test all cast configurations.
2020-06-30 18:53:55 +00:00
Teng Lu
386d809bde Support BFloat16 in Eigen 2020-06-20 19:16:24 +00:00