part of a matrix. Triangular also provide an optimised method for forward
and backward substitution. Further optimizations regarding assignments and
products might come later.
Updated determinant() to take into account triangular matrices.
Started the QR module with a QR decompostion algorithm.
Help needed to build a QR algorithm (eigen solver) based on it.
- support dynamic sizes
- support arbitrary matrix size when the matrix can be seen as a 1D array
(except for fixed size matrices where the size in Bytes must be a factor of 16,
this is to allow compact storage of a vector of matrices)
Note that the explict vectorization is still experimental and far to be completely tested.
are provided to handle not suported types seemlessly.
Added a generic null-ary expression with null-ary functors. They replace
Zero, Ones, Identity and Random.
* add -pedantic to CXXFLAGS
* cleanup intricated expressions with && and ||
which gave warnings because of "missing" parentheses
* fix compile error in NumTraits, apparently discovered
by -pedantic
Currently only the following platform/operations are supported:
- SSE2 compatible architecture
- compiler compatible with intel's SSE2 intrinsics
- float, double and int data types
- fixed size matrices with a storage major dimension multiple of 4 (or 2 for double)
- scalar-matrix product, component wise: +,-,*,min,max
- matrix-matrix product only if the left matrix is vectorizable and column major
or the right matrix is vectorizable and row major, e.g.:
a.transpose() * b is not vectorized with the default column major storage.
To use it you must define EIGEN_VECTORIZE and EIGEN_INTEL_PLATFORM.
in ei_xpr_copy and operator=, respectively.
* added Matrix::lazyAssign() when EvalBeforeAssigningBit must be skipped
(mainly internal use only)
* all expressions are now stored by const reference
* added Temporary xpr: .temporary() must be called on any temporary expression
not directly returned by a function (mainly internal use only)
* moved all functors in the Functors.h header
* added some preliminaries stuff for the explicit vectorization
to preserve SVN history). They are made useless by the new
ei_eval_unless_lazy.
- introduce a generic Eval member typedef so one can do e.g.
T t; U u; Product<T, U>::Eval m; m = t*u;
* macro renaming: EIGEN_NDEBUG becomes EIGEN_NO_DEBUG
as this is much better (and similar to Qt) and
EIGEN_CUSTOM_ASSERT becomes EIGEN_USE_CUSTOM_ASSERT
* protect Core header by a EIGEN_CORE_H
as well as partial redux (vertical or horizontal redux).
Includes shortcuts for: sum, minCoeff and maxCoeff.
There is no shortcut for the partial redux.
* Added a generic *visitor* mini framework. A visitor is a custom object
sequentially applied on each coefficient with knowledge of its value and
coordinates.
It is currentlly used to implement minCoeff(int*,int*) and maxCoeff(int*,int*).
findBiggestCoeff is now a shortcut for "this->cwiseAbs().maxCoeff(i,j)"
* Added coeff-wise min and max.
* fixed an issue with ei_pow(int,int) and gcc < 4.3 or ICC
If the number of coefficients does not match the matrix size, then an assertion is raised.
No support for xpr on the right side for the moment.
* Added support for assertion checking. This allows to test that an assertion is indeed raised
when it should be.
* Fixed a mistake in the CwiseUnary example.
- compatible with current STL's functors as well as with the extention proposal (TR1)
* thanks to the above, Cast and ScalarMultiple have been removed
* benchmark_suite is more flexible (compiler and matrix size)
* functor templates are not template template parameter anymore
(this allows to make templated functors !)
* Main page: extented compiler discussion
* A small hack to support gcc 3.4 and 4.0 (see the main page)
* Fix a cast type issue in Cast
* Various doxygen updates (mainly Cwise stuff and added doxygen groups
in MatrixBase to split the huge memeber list, still not perfect though)
* Updated Gael's email address
Rework the matrix storage to ensure optimal sizeof in all cases, while
keeping the decoupling of matrix sizes versus storage sizes.
Also fixing (recently introduced) bugs caused by unwanted
reallocations of the buffers.
- finally get the Eval stuff right. get back to having Eval as
a subclass of Matrix with limited functionality, and then,
add a typedef MatrixType to get the actual matrix type.
- add swap(), findBiggestCoeff()
- bugfix by Ramon in Transpose
- new demo: doc/echelon.cpp
dimension. The advantage is that evaluating a dynamic-sized block in a fixed-size
matrix no longer causes a dynamic memory allocation. Other new thing:
IntAtRunTimeIfDynamic allows storing an integer at zero cost if it is known at
compile time.
1) Eigen2 co-installable with Eigen1 without conflict, without affecting programs including either.
2) #include<Eigen/Core> without the .h without conflict with the Core/ directory
3) Uniformize coding style of the CMakeLists.
This is an optimization for complex matrices, allowing to do only a real multiplication
when a complex multiplication is not needed, e.g. in normalized().
with minimal code duplication. There now are only two (2)
const_cast remaining in the whole source code.
- eigen2 now fully allows copying a row-vector into a column-vector.
added a unit-test for that.
- split unit tests, improve docs, various improvements.
- make vectors use a separate loop unroller, so that copying a
row-vector into a col-vector is now possible
- add much more documentation
- misc improvements