Commit Graph

5311 Commits

Author SHA1 Message Date
Gael Guennebaud
76687f385c bug #1394: fix compilation of SelfAdjointEigenSolver<Matrix>(sparse*sparse); 2017-02-20 14:27:26 +01:00
Gael Guennebaud
6572825703 bug #1395: fix the use of compile-time vectors as inputs of JacobiSVD. 2017-02-20 13:44:37 +01:00
Gael Guennebaud
a811a04696 Silent warning. 2017-02-20 10:14:21 +01:00
Gael Guennebaud
63798df038 Fix usage of CUDACC_VER 2017-02-20 08:16:36 +01:00
Gael Guennebaud
deefa54a54 Fix tracking of temporaries in unit tests 2017-02-19 10:32:54 +01:00
Gael Guennebaud
cbbf88c4d7 Use int32_t instead of int in NEON code. Some platforms with 16 bytes int supports ARM NEON. 2017-02-17 14:39:02 +01:00
Gael Guennebaud
582b5e39bf bug #1393: enable Matrix/Array explicit ctor from types with conversion operators (was ok with 3.2) 2017-02-17 14:10:57 +01:00
Benoit Steiner
31a25ab226 Merged eigen/eigen into default 2017-02-14 15:36:21 -08:00
Gael Guennebaud
5937c4ae32 Fall back is_integral to std::is_integral in c++11 2017-02-13 17:14:26 +01:00
Jonathan Hseu
3453b00a1e Fix vector indexing with uint64_t 2017-02-11 21:45:32 -08:00
Gael Guennebaud
e7ebe52bfb bug #1391: include IO.h before DenseBase to enable its usage in DenseBase plugins. 2017-02-13 09:46:20 +01:00
Gael Guennebaud
b3750990d5 Workaround some gcc 4.7 warnings 2017-02-11 23:24:06 +01:00
Gael Guennebaud
c16ee72b20 bug #1392: fix #include <Eigen/Sparse> with mpl2-only 2017-02-11 10:35:01 +01:00
Gael Guennebaud
e43016367a Forgot to include a file in previous commit 2017-02-11 10:34:18 +01:00
Gael Guennebaud
6486d4fc95 Worakound gcc 4.7 issue in c++11. 2017-02-11 10:29:10 +01:00
Gael Guennebaud
4a4a72951f Fix previous commits: disbale only problematic indexed view methods for old compilers instead of disabling everything.
Tested with gcc 4.7 (c++03) and gcc 4.8 (c++03 & c++11)
2017-02-11 10:28:44 +01:00
Benoit Steiner
fad776492f Merged eigen/eigen into default 2017-02-10 14:27:43 -08:00
Benoit Steiner
1ef30b8090 Fixed bug introduced in previous commit 2017-02-10 13:35:10 -08:00
Benoit Steiner
769208a17f Pulled latest updates from upstream 2017-02-10 13:11:40 -08:00
Benoit Steiner
8b3cc54c42 Added a new EIGEN_HAS_INDEXED_VIEW define that set to 0 for older compilers that are known to fail to compile the indexed views (I used the define from the indexed_views.cpp test).
Only include the indexed view methods when the compiler supports the code.
This makes it possible to use Eigen again in complex code bases such as TensorFlow and older compilers such as gcc 4.8
2017-02-10 13:08:49 -08:00
Gael Guennebaud
a1ff24f96a Fix prunning in (sparse*sparse).pruned() when the result is nearly dense. 2017-02-10 13:59:32 +01:00
Gael Guennebaud
0256c52359 Include clang in the list of non strict MSVC (just to be sure) 2017-02-10 13:41:52 +01:00
Alexander Neumann
dd58462e63 fixed inlining issue with clang-cl on visual studio
(grafted from 7962ac1a58
)
2017-02-08 23:50:38 +01:00
Gael Guennebaud
fc8fd5fd24 Improve multi-threading heuristic for matrix products with a small number of columns. 2017-02-07 17:19:59 +01:00
Gael Guennebaud
4254b3eda3 bug #1389: MSVC's std containers do not properly align in 64 bits mode if the requested alignment is larger than 16 bytes (e.g., with AVX) 2017-02-03 15:22:35 +01:00
Benoit Steiner
2db75c07a6 fixed the ordering of the template and EIGEN_DEVICE_FUNC keywords in a few more places to get more of the Eigen codebase to compile with nvcc again. 2017-02-01 15:41:29 -08:00
Benoit Steiner
fcd257039b Replaced EIGEN_DEVICE_FUNC template<foo> with template<foo> EIGEN_DEVICE_FUNC to make the code compile with nvcc8. 2017-02-01 15:30:49 -08:00
Gael Guennebaud
0eceea4efd Define EIGEN_COMP_GNUC to reflect version number: 47, 48, 49, 50, 60, ... 2017-02-01 23:36:40 +01:00
Gael Guennebaud
645a8e32a5 Fix compilation of JacobiSVD for vectors type 2017-01-31 16:22:54 +01:00
Gael Guennebaud
53026d29d4 bug #478: fix regression in the eigen decomposition of zero matrices. 2017-01-31 14:22:42 +01:00
Benoit Steiner
fbc39fd02c Merge latest changes from upstream 2017-01-30 15:25:57 -08:00
Gael Guennebaud
c86911ac73 bug #1384: fix evaluation of "sparse/scalar" that used the wrong evaluation path. 2017-01-30 13:38:24 +01:00
Gael Guennebaud
d024e9942d MSVC 1900 release is not c++14 compatible enough for us. The 1910 update seems to be fine though. 2017-01-27 22:17:59 +01:00
Rasmus Munk Larsen
edaa0fc5d1 Revert PR-292. After further investigation, the memcpy->memmove change was only good for Haswell on older versions of glibc. Adding a switch for small sizes is perhaps useful for string copies, but also has an overhead for larger sizes, making it a poor trade-off for general memcpy.
This PR also removes a couple of unnecessary semi-colons in Eigen/src/Core/AssignEvaluator.h that caused compiler warning everywhere.
2017-01-26 12:46:06 -08:00
Gael Guennebaud
25a1703579 Merged in ggael/eigen-flexidexing (pull request PR-294)
generalized operator() for indexed access and slicing
2017-01-26 08:04:23 +00:00
Gael Guennebaud
98dfe0c13f Fix useless ';' warning 2017-01-25 22:55:04 +01:00
Gael Guennebaud
28351073d8 Fix unamed type as template argument (ok in c++11 only) 2017-01-25 22:54:51 +01:00
Gael Guennebaud
607be65a03 Fix duplicates of array_size bewteen unsupported and Core 2017-01-25 22:53:58 +01:00
Rasmus Munk Larsen
7d39c6d50a Merged eigen/eigen into default 2017-01-25 09:22:26 -08:00
Rasmus Munk Larsen
5c9ed4ba0d Reverse arguments for pmin in AVX. 2017-01-25 09:21:57 -08:00
Gael Guennebaud
850ca961d2 bug #1383: fix regression in LinSpaced for integers and high<low 2017-01-25 18:13:53 +01:00
Gael Guennebaud
296d24be4d bug #1381: fix sparse.diagonal() used as a rvalue.
The problem was that is "sparse" is not const, then sparse.diagonal() must have the
LValueBit flag meaning that sparse.diagonal().coeff(i) must returns a const reference,
const Scalar&. However, sparse::coeff() cannot returns a reference for a non-existing
zero coefficient. The trick is to return a reference to a local member of
evaluator<SparseMatrix>.
2017-01-25 17:39:01 +01:00
Gael Guennebaud
d06a48959a bug #1383: Fix regression from 3.2 with LinSpaced(n,0,n-1) with n==0. 2017-01-25 15:27:13 +01:00
Rasmus Munk Larsen
ae3e43a125 Remove extra space. 2017-01-24 16:16:39 -08:00
Benoit Steiner
e96c77668d Merged in rmlarsen/eigen2 (pull request PR-292)
Adds a fast memcpy function to Eigen.
2017-01-25 00:14:04 +00:00
Rasmus Munk Larsen
3be5ee2352 Update copy helper to use fast_memcpy. 2017-01-24 14:22:49 -08:00
Rasmus Munk Larsen
e6b1020221 Adds a fast memcpy function to Eigen. This takes advantage of the following:
1. For small fixed sizes, the compiler generates inline code for memcpy, which is much faster.

2. My colleague eriche at googl dot com discovered that for large sizes, memmove is significantly faster than memcpy (at least on Linux with GCC or Clang). See benchmark numbers measured on a Haswell (HP Z440) workstation here: https://docs.google.com/a/google.com/spreadsheets/d/1jLs5bKzXwhpTySw65MhG1pZpsIwkszZqQTjwrd_n0ic/pubhtml This is of course surprising since memcpy is a less constrained version of memmove. This stackoverflow thread contains some speculation as to the causes: http://stackoverflow.com/questions/22793669/poor-memcpy-performance-on-linux

Below are numbers for copying and slicing tensors using the multithreaded TensorDevice. The numbers show significant improvements for memcpy of very small blocks and for memcpy of large blocks single threaded (we were already able to saturate memory bandwidth for >1 threads before on large blocks). The "slicingSmallPieces" benchmark also shows small consistent improvements, since memcpy cost is a fair portion of that particular computation.

The benchmarks operate on NxN matrices, and the names are of the form BM_$OP_${NUMTHREADS}T/${N}.

Measured improvements in wall clock time:

Run on rmlarsen3.mtv (12 X 3501 MHz CPUs); 2017-01-20T11:26:31.493023454-08:00
CPU: Intel Haswell with HyperThreading (6 cores) dL1:32KB dL2:256KB dL3:15MB
Benchmark                          Base (ns)  New (ns) Improvement
------------------------------------------------------------------
BM_memcpy_1T/2                          3.48      2.39    +31.3%
BM_memcpy_1T/8                          12.3      6.51    +47.0%
BM_memcpy_1T/64                          371       383     -3.2%
BM_memcpy_1T/512                       66922     66720     +0.3%
BM_memcpy_1T/4k                      9892867   6849682    +30.8%
BM_memcpy_1T/5k                     14951099  10332856    +30.9%
BM_memcpy_2T/2                          3.50      2.46    +29.7%
BM_memcpy_2T/8                          12.3      7.66    +37.7%
BM_memcpy_2T/64                          371       376     -1.3%
BM_memcpy_2T/512                       66652     66788     -0.2%
BM_memcpy_2T/4k                      6145012   6117776     +0.4%
BM_memcpy_2T/5k                      9181478   9010942     +1.9%
BM_memcpy_4T/2                          3.47      2.47    +31.0%
BM_memcpy_4T/8                          12.3      6.67    +45.8
BM_memcpy_4T/64                          374       376     -0.5%
BM_memcpy_4T/512                       67833     68019     -0.3%
BM_memcpy_4T/4k                      5057425   5188253     -2.6%
BM_memcpy_4T/5k                      7555638   7779468     -3.0%
BM_memcpy_6T/2                          3.51      2.50    +28.8%
BM_memcpy_6T/8                          12.3      7.61    +38.1%
BM_memcpy_6T/64                          373       378     -1.3%
BM_memcpy_6T/512                       66871     66774     +0.1%
BM_memcpy_6T/4k                      5112975   5233502     -2.4%
BM_memcpy_6T/5k                      7614180   7772246     -2.1%
BM_memcpy_8T/2                          3.47      2.41    +30.5%
BM_memcpy_8T/8                          12.4      10.5    +15.3%
BM_memcpy_8T/64                          372       388     -4.3%
BM_memcpy_8T/512                       67373     66588     +1.2%
BM_memcpy_8T/4k                      5148462   5254897     -2.1%
BM_memcpy_8T/5k                      7660989   7799058     -1.8%
BM_memcpy_12T/2                         3.50      2.40    +31.4%
BM_memcpy_12T/8                         12.4      7.55    +39.1
BM_memcpy_12T/64                         374       378     -1.1%
BM_memcpy_12T/512                      67132     66683     +0.7%
BM_memcpy_12T/4k                     5185125   5292920     -2.1%
BM_memcpy_12T/5k                     7717284   7942684     -2.9%
BM_slicingSmallPieces_1T/2              47.3      47.5     +0.4%
BM_slicingSmallPieces_1T/8              53.6      52.3     +2.4%
BM_slicingSmallPieces_1T/64              491       476     +3.1%
BM_slicingSmallPieces_1T/512           21734     18814    +13.4%
BM_slicingSmallPieces_1T/4k           394660    396760     -0.5%
BM_slicingSmallPieces_1T/5k           218722    209244     +4.3%
BM_slicingSmallPieces_2T/2              80.7      79.9     +1.0%
BM_slicingSmallPieces_2T/8              54.2      53.1     +2.0
BM_slicingSmallPieces_2T/64              497       477     +4.0%
BM_slicingSmallPieces_2T/512           21732     18822    +13.4%
BM_slicingSmallPieces_2T/4k           392885    390490     +0.6%
BM_slicingSmallPieces_2T/5k           221988    208678     +6.0%
BM_slicingSmallPieces_4T/2              80.8      80.1     +0.9%
BM_slicingSmallPieces_4T/8              54.1      53.2     +1.7%
BM_slicingSmallPieces_4T/64              493       476     +3.4%
BM_slicingSmallPieces_4T/512           21702     18758    +13.6%
BM_slicingSmallPieces_4T/4k           393962    404023     -2.6%
BM_slicingSmallPieces_4T/5k           249667    211732    +15.2%
BM_slicingSmallPieces_6T/2              80.5      80.1     +0.5%
BM_slicingSmallPieces_6T/8              54.4      53.4     +1.8%
BM_slicingSmallPieces_6T/64              488       478     +2.0%
BM_slicingSmallPieces_6T/512           21719     18841    +13.3%
BM_slicingSmallPieces_6T/4k           394950    397583     -0.7%
BM_slicingSmallPieces_6T/5k           223080    210148     +5.8%
BM_slicingSmallPieces_8T/2              81.2      80.4     +1.0%
BM_slicingSmallPieces_8T/8              58.1      53.5     +7.9%
BM_slicingSmallPieces_8T/64              489       480     +1.8%
BM_slicingSmallPieces_8T/512           21586     18798    +12.9%
BM_slicingSmallPieces_8T/4k           394592    400165     -1.4%
BM_slicingSmallPieces_8T/5k           219688    208301     +5.2%
BM_slicingSmallPieces_12T/2             80.2      79.8     +0.7%
BM_slicingSmallPieces_12T/8             54.4      53.4     +1.8
BM_slicingSmallPieces_12T/64             488       476     +2.5%
BM_slicingSmallPieces_12T/512          21931     18831    +14.1%
BM_slicingSmallPieces_12T/4k          393962    396541     -0.7%
BM_slicingSmallPieces_12T/5k          218803    207965     +5.0%
2017-01-24 13:55:18 -08:00
Rasmus Munk Larsen
7b6aaa3440 Fix NaN propagation for AVX512. 2017-01-24 13:37:08 -08:00
Rasmus Munk Larsen
5e144bbaa4 Make NaN propagatation consistent between the pmax/pmin and std::max/std::min. This makes the NaN propagation consistent between the scalar and vectorized code paths of Eigen's scalar_max_op and scalar_min_op.
See #1373 for details.
2017-01-24 13:32:50 -08:00
Gael Guennebaud
d83db761a2 Add support for std::integral_constant 2017-01-24 16:28:12 +01:00