Commit Graph

10853 Commits

Author SHA1 Message Date
Eugene Zhulenev
f35b9ab510 Fix a bug in a packed block type in TensorContractionThreadPool 2019-09-24 16:54:36 -07:00
Rasmus Larsen
d38e6fbc27 Merged in rmlarsen/eigen (pull request PR-704)
Add generic PacketMath implementation of the Error Function (erf).
2019-09-24 23:40:29 +00:00
Rasmus Munk Larsen
591a554c68 Add TODO to cleanup FMA cost modelling. 2019-09-24 16:39:25 -07:00
Eugene Zhulenev
c64396b4c6 Choose TensorBlock StridedLinearCopy type statically 2019-09-24 16:04:29 -07:00
Eugene Zhulenev
c97b208468 Add new TensorBlock api implementation + tests 2019-09-24 15:17:35 -07:00
Eugene Zhulenev
ef9dfee7bd Tensor block evaluation V2 support for unary/binary/broadcsting 2019-09-24 12:52:45 -07:00
Christoph Hertzberg
efd9867ff0 bug #1746: Removed implementation of standard copy-constructor and standard copy-assign-operator from PermutationMatrix and Transpositions to allow malloc-less std::move. Added unit-test to rvalue_types 2019-09-24 11:09:58 +02:00
Christoph Hertzberg
e4c1b3c1d2 Fix implicit conversion warnings and use pnegate to negate packets 2019-09-23 16:07:43 +02:00
Christoph Hertzberg
ba0736fa8e Fix (or mask away) conversion warnings introduced in 553caeb6a3
.
2019-09-23 15:58:05 +02:00
Rasmus Munk Larsen
1d5af0693c Add support for asynchronous evaluation of tensor casting expressions. 2019-09-19 13:54:49 -07:00
Rasmus Munk Larsen
6de5ed08d8 Add generic PacketMath implementation of the Error Function (erf). 2019-09-19 12:48:30 -07:00
Rasmus Munk Larsen
28b6786498 Fix build on setups without AVX512DQ. 2019-09-19 12:36:09 -07:00
Deven Desai
e02d429637 Fix for the HIP build+test errors.
The errors were introduced by this commit : 6e215cf109


The fix is switching to using ::<math_func> instead std::<math_func> when compiling for GPU
2019-09-18 18:44:20 +00:00
Srinivas Vasudevan
df0816b71f Merging eigen/eigen. 2019-09-16 19:33:29 -04:00
Srinivas Vasudevan
6e215cf109 Add Bessel functions to SpecialFunctions.
- Split SpecialFunctions files in to a separate BesselFunctions file.

In particular add:
    - Modified bessel functions of the second kind k0, k1, k0e, k1e
    - Bessel functions of the first kind j0, j1
    - Bessel functions of the second kind y0, y1
2019-09-14 12:16:47 -04:00
Eugene Zhulenev
7c73296849 Revert accidental change to GCC diagnostics 2019-09-13 14:30:58 -07:00
Eugene Zhulenev
bf8866b466 Fix maybe-unitialized warnings in TensorContractionThreadPool 2019-09-13 14:29:55 -07:00
Eugene Zhulenev
553caeb6a3 Use ThreadLocal container in TensorContractionThreadPool 2019-09-13 12:14:44 -07:00
Srinivas Vasudevan
facdec5aa7 Add packetized versions of i0e and i1e special functions.
- In particular refactor the i0e and i1e code so scalar and vectorized path share code.
  - Move chebevl to GenericPacketMathFunctions.


A brief benchmark with building Eigen with FMA, AVX and AVX2 flags

Before:

CPU: Intel Haswell with HyperThreading (6 cores)
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
BM_eigen_i0e_double/1            57.3           57.3     10000000
BM_eigen_i0e_double/8           398            398        1748554
BM_eigen_i0e_double/64         3184           3184         218961
BM_eigen_i0e_double/512       25579          25579          27330
BM_eigen_i0e_double/4k       205043         205042           3418
BM_eigen_i0e_double/32k     1646038        1646176            422
BM_eigen_i0e_double/256k   13180959       13182613             53
BM_eigen_i0e_double/1M     52684617       52706132             10
BM_eigen_i0e_float/1             28.4           28.4     24636711
BM_eigen_i0e_float/8             75.7           75.7      9207634
BM_eigen_i0e_float/64           512            512        1000000
BM_eigen_i0e_float/512         4194           4194         166359
BM_eigen_i0e_float/4k         32756          32761          21373
BM_eigen_i0e_float/32k       261133         261153           2678
BM_eigen_i0e_float/256k     2087938        2088231            333
BM_eigen_i0e_float/1M       8380409        8381234             84
BM_eigen_i1e_double/1            56.3           56.3     10000000
BM_eigen_i1e_double/8           397            397        1772376
BM_eigen_i1e_double/64         3114           3115         223881
BM_eigen_i1e_double/512       25358          25361          27761
BM_eigen_i1e_double/4k       203543         203593           3462
BM_eigen_i1e_double/32k     1613649        1613803            428
BM_eigen_i1e_double/256k   12910625       12910374             54
BM_eigen_i1e_double/1M     51723824       51723991             10
BM_eigen_i1e_float/1             28.3           28.3     24683049
BM_eigen_i1e_float/8             74.8           74.9      9366216
BM_eigen_i1e_float/64           505            505        1000000
BM_eigen_i1e_float/512         4068           4068         171690
BM_eigen_i1e_float/4k         31803          31806          21948
BM_eigen_i1e_float/32k       253637         253692           2763
BM_eigen_i1e_float/256k     2019711        2019918            346
BM_eigen_i1e_float/1M       8238681        8238713             86


After:

CPU: Intel Haswell with HyperThreading (6 cores)
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
BM_eigen_i0e_double/1            15.8           15.8     44097476
BM_eigen_i0e_double/8            99.3           99.3      7014884
BM_eigen_i0e_double/64          777            777         886612
BM_eigen_i0e_double/512        6180           6181         100000
BM_eigen_i0e_double/4k        48136          48140          14678
BM_eigen_i0e_double/32k      385936         385943           1801
BM_eigen_i0e_double/256k    3293324        3293551            228
BM_eigen_i0e_double/1M     12423600       12424458             57
BM_eigen_i0e_float/1             16.3           16.3     43038042
BM_eigen_i0e_float/8             30.1           30.1     23456931
BM_eigen_i0e_float/64           169            169        4132875
BM_eigen_i0e_float/512         1338           1339         516860
BM_eigen_i0e_float/4k         10191          10191          68513
BM_eigen_i0e_float/32k        81338          81337           8531
BM_eigen_i0e_float/256k      651807         651984           1000
BM_eigen_i0e_float/1M       2633821        2634187            268
BM_eigen_i1e_double/1            16.2           16.2     42352499
BM_eigen_i1e_double/8           110            110        6316524
BM_eigen_i1e_double/64          822            822         851065
BM_eigen_i1e_double/512        6480           6481         100000
BM_eigen_i1e_double/4k        51843          51843          10000
BM_eigen_i1e_double/32k      414854         414852           1680
BM_eigen_i1e_double/256k    3320001        3320568            212
BM_eigen_i1e_double/1M     13442795       13442391             53
BM_eigen_i1e_float/1             17.6           17.6     41025735
BM_eigen_i1e_float/8             35.5           35.5     19597891
BM_eigen_i1e_float/64           240            240        2924237
BM_eigen_i1e_float/512         1424           1424         485953
BM_eigen_i1e_float/4k         10722          10723          65162
BM_eigen_i1e_float/32k        86286          86297           8048
BM_eigen_i1e_float/256k      691821         691868           1000
BM_eigen_i1e_float/1M       2777336        2777747            256


This shows anywhere from a 50% to 75% improvement on these operations.

I've also benchmarked without any of these flags turned on, and got similar
performance to before (if not better).

Also tested packetmath.cpp + special_functions to ensure no regressions.
2019-09-11 18:34:02 -07:00
Srinivas Vasudevan
b052ec6992 Merged eigen/eigen into default 2019-09-11 18:01:54 -07:00
Deven Desai
cdb377d0cb Fix for the HIP build+test errors introduced by the ndtri support.
The fixes needed are
 * adding EIGEN_DEVICE_FUNC attribute to a couple of funcs (else HIPCC will error out when non-device funcs are called from global/device funcs)
 * switching to using ::<math_func> instead std::<math_func> (only for HIPCC) in cases where the std::<math_func> is not recognized as a device func by HIPCC
 * removing an errant "j" from a testcase (don't know how that made it in to begin with!)
2019-09-06 16:03:49 +00:00
Gael Guennebaud
747c6a51ca bug #1736: fix compilation issue with A(all,{1,2}).col(j) by implementing true compile-time "if" for block_evaluator<>::coeff(i)/coeffRef(i) 2019-09-11 15:40:07 +02:00
Gael Guennebaud
031f17117d bug #1741: fix self-adjoint*matrix, triangular*matrix, and triangular^1*matrix with a destination having a non-trivial inner-stride 2019-09-11 15:04:25 +02:00
Gael Guennebaud
459b2bcc08 Fix compilation of BLAS backend and frontend 2019-09-11 10:02:37 +02:00
Rasmus Larsen
97f1e1d89f Merged in ezhulenev/eigen-01 (pull request PR-698)
ThreadLocal container that does not rely on thread local storage

Approved-by: Rasmus Larsen <rmlarsen@google.com>
2019-09-10 23:19:33 +00:00
Eugene Zhulenev
d918bd9a8b Update ThreadLocal to use separate Initialize/Release callables 2019-09-10 16:13:32 -07:00
Gael Guennebaud
afa8d13532 Fix some implicit literal to Scalar conversions in SparseCore 2019-09-11 00:03:07 +02:00
Gael Guennebaud
c06e6fd115 bug #1741: fix SelfAdjointView::rankUpdate and product to triangular part for destination with non-trivial inner stride 2019-09-10 23:29:52 +02:00
Gael Guennebaud
ea0d5dc956 bug #1741: fix C.noalias() = A*C; with C.innerStride()!=1 2019-09-10 16:25:24 +02:00
Eugene Zhulenev
e3dec4dcc1 ThreadLocal container that does not rely on thread local storage 2019-09-09 15:18:14 -07:00
Gael Guennebaud
17226100c5 Fix a circular dependency regarding pshift* functions and GenericPacketMathFunctions.
Another solution would have been to make pshift* fully generic template functions with
partial specialization which is always a mess in c++03.
2019-09-06 09:26:04 +02:00
Gael Guennebaud
55b63d4ea3 Fix compilation without vector engine available (e.g., x86 with SSE disabled):
-> ppolevl is required by ndtri even for the scalar path
2019-09-05 18:16:46 +02:00
Srinivas Vasudevan
a9cf823db7 Merged eigen/eigen 2019-09-04 23:50:52 -04:00
Gael Guennebaud
e6c183f8fd Fix doc issues regarding ndtri 2019-09-04 23:00:21 +02:00
Gael Guennebaud
5702a57926 Fix possible warning regarding strict equality comparisons 2019-09-04 22:57:04 +02:00
Srinivas Vasudevan
99036a3615 Merging from eigen/eigen. 2019-09-03 15:34:47 -04:00
Eugene Zhulenev
a8d264fa9c Add test for const TensorMap underlying data mutation 2019-09-03 11:38:39 -07:00
Eugene Zhulenev
f68f2bba09 TensorMap constness should not change underlying storage constness 2019-09-03 11:08:09 -07:00
Gael Guennebaud
8e7e3d9bc8 Makes Scalar/RealScalar typedefs public in Pardiso's wrappers (see PR 688) 2019-09-03 13:09:03 +02:00
Srinivas Vasudevan
e38dd48a27 PR 681: Add ndtri function, the inverse of the normal distribution function. 2019-08-12 19:26:29 -04:00
Eugene Zhulenev
f59bed7a13 Change typedefs from private to protected to fix MSVC compilation 2019-09-03 19:11:36 -07:00
Eugene Zhulenev
47fefa235f Allow move-only done callback in TensorAsyncDevice 2019-09-03 17:20:56 -07:00
Srinivas Vasudevan
18ceb3413d Add ndtri function, the inverse of the normal distribution function. 2019-08-12 19:26:29 -04:00
Rasmus Munk Larsen
d55d392e7b Fix bugs in log1p and expm1 where repeated using statements would clobber each other.
Add specializations for complex types since std::log1p and std::exp1m do not support complex.
2019-08-08 16:27:32 -07:00
Rasmus Munk Larsen
85928e5f47 Guard against repeated definition of EIGEN_MPL2_ONLY 2019-08-07 14:19:00 -07:00
Rasmus Munk Larsen
facc4e4536 Disable tests for contraction with output kernels when using libxsmm, which does not support this. 2019-08-07 14:11:15 -07:00
Rasmus Munk Larsen
eab7e52db2 [Eigen] Vectorize evaluation of coefficient-wise functions over tensor blocks if the strides are known to be 1. Provides up to 20-25% speedup of the TF cross entropy op with AVX.
A few benchmark numbers:

name                              old time/op             new time/op             delta
BM_Xent_16_10000_cpu              448µs ± 3%              389µs ± 2%  -13.21%
(p=0.008 n=5+5)
BM_Xent_32_10000_cpu              575µs ± 6%              454µs ± 3%  -21.00%          (p=0.008 n=5+5)
BM_Xent_64_10000_cpu              933µs ± 4%              712µs ± 1%  -23.71%          (p=0.008 n=5+5)
2019-08-07 12:57:42 -07:00
Rasmus Munk Larsen
0987126165 Clean up unnecessary namespace specifiers in TensorBlock.h. 2019-08-07 12:12:52 -07:00
Gael Guennebaud
0050644b23 Fix doc regarding alignment and c++17 2019-08-04 01:09:41 +02:00
Rasmus Munk Larsen
e2999d4c38 Fix performance regressions due to https://bitbucket.org/eigen/eigen/pull-requests/662.
The change caused the device struct to be copied for each expression evaluation, and caused, e.g., a 10% regression in the TensorFlow multinomial op on GPU:


Benchmark                       Time(ns)        CPU(ns)     Iterations
----------------------------------------------------------------------
BM_Multinomial_gpu_1_100000_4     128173         231326           2922  1.610G items/s

VS

Benchmark                       Time(ns)        CPU(ns)     Iterations
----------------------------------------------------------------------
BM_Multinomial_gpu_1_100000_4     146683         246914           2719  1.509G items/s
2019-08-02 11:18:13 -07:00