The existing `Ref` class failed to consider cases where the Ref's
`Stride` setting *could* match the underlying referred object's stride,
but **didn't** at runtime. This led to trying to set invalid stride values,
causing runtime failures in some cases, and garbage due to mismatched
strides in others.
Here we add the missing runtime checks. This involves computing the
strides necessary to align with the referred object's storage, and
verifying we can actually set those strides at runtime.
In the `const` case, if it *may* be possible to refer to the original
storage at compile-time but fails at runtime, then we defer to the
`construct(...)` method that makes a copy.
Added more tests to check these cases.
Fixes#2093.
This is to support scalar `sqrt` of complex numbers `std::complex<T>` on
device, requested by Tensorflow folks.
Technically `std::complex` is not supported by NVCC on device
(though it is by clang), so the default `sqrt(std::complex<T>)` function only
works on the host. Here we create an overload to add back the
functionality.
Also modified the CMake file to add `--relaxed-constexpr` (or
equivalent) flag for NVCC to allow calling constexpr functions from
device functions, and added support for specifying compute architecture for
NVCC (was already available for clang).
For these to exist we would need to define `_USE_MATH_DEFINES` before
`cmath` or `math.h` is first included. However, we don't
control the include order for projects outside Eigen, so even defining
the macro in `Eigen/Core` does not fix the issue for projects that
end up including `<cmath>` before Eigen does (explicitly or transitively).
To fix this, we define `EIGEN_LOG2E` and `EIGEN_LN2` ourselves.
This allows the `packetmath` tests to pass for AVX512 on skylake.
Made `half` and `bfloat16` consistent in terms of ops they support.
Note the `log` tests are currently disabled for `bfloat16` since
they fail due to poor precision (they were previously disabled for
`Packet8bf` via test function specialization -- I just removed that
specialization and disabled it in the generic test).
Allows exclusion of doc and related targets to help when using eigen via add_subdirectory().
Requested by:
https://gitlab.com/libeigen/eigen/-/issues/1842
Also required making EIGEN_TEST_BUILD_DOCUMENTATION a dependent option on EIGEN_BUILD_DOC. This ensures documentation targets are properly defined when EIGEN_TEST_BUILD_DOCUMENTATION is ON.
The `half_float` test was failing with `-mcpu=cortex-a55` (native `__fp16`) due
to a bad NaN bit-pattern comparison (in the case of casting a float to `__fp16`,
the signaling `NaN` is quieted). There was also an inconsistency between
`numeric_limits<half>::quiet_NaN()` and `NumTraits::quiet_NaN()`. Here we
correct the inconsistency and compare NaNs according to the IEEE 754
definition.
Also modified the `bfloat16_float` test to match.
Tested with `cortex-a53` and `cortex-a55`.
Minimal implementation of AVX `Eigen::half` ops to bring in line
with `bfloat16`. Allows `packetmath_13` to pass.
Also adjusted `bfloat16` packet traits to match the supported set
of ops (e.g. Bessel is not actually implemented).
The `half_float` test was failing with `-mcpu=cortex-a55` (native `__fp16`) due
to a bad NaN bit-pattern comparison (in the case of casting a float to `__fp16`,
the signaling `NaN` is quieted). There was also an inconsistency between
`numeric_limits<half>::quiet_NaN()` and `NumTraits::quiet_NaN()`. Here we
correct the inconsistency and compare NaNs according to the IEEE 754
definition.
Also modified the `bfloat16_float` test to match.
Tested with `cortex-a53` and `cortex-a55`.
The AVX half implementation is incomplete, causing the `packetmath_13` test
to fail. This disables the test.
Also refactored the existing AVX implementation to use `bit_cast`
instead of direct access to `.x`.
Multiplication of column-major `DynamicSparseMatrix`es involves three
temporaries:
- two for transposing twice to sort the coefficients
(`ConservativeSparseSparseProduct.h`, L160-161)
- one for a final copy assignment (`SparseAssign.h`, L108)
The latter is avoided in an optimization for `SparseMatrix`.
Since `DynamicSparseMatrix` is deprecated in favor of `SparseMatrix`, it's not
worth the effort to optimize further, so I simply disabled counting
temporaries via a macro.
Note that due to the inclusion of `sparse_product.cpp`, the `sparse_extra`
tests actually re-run all the original `sparse_product` tests as well.
We may want to simply drop the `DynamicSparseMatrix` tests altogether, which
would eliminate the test duplication.
Related to #2048
The existing `TensorRandom.h` implementation makes the assumption that
`half` (`bfloat16`) has a `uint16_t` member `x` (`value`), which is not
always true. This currently fails on arm64, where `x` has type `__fp16`.
Added `bit_cast` specializations to allow casting to/from `uint16_t`
for both `half` and `bfloat16`. Also added tests in
`half_float`, `bfloat16_float`, and `cxx11_tensor_random` to catch
these errors in the future.
The `meta` test generates warnings with the latest version of clang due
to passing uninitialized variables as const reference arguments.
```
test/meta.cpp:102:45: error: variable 'f' is uninitialized when passed as a const reference argument here [-Werror,-Wuninitialized-const-reference]
VERIFY(( check_is_convertible(a.dot(b), f) ));
```
We don't actually use the variables, but initializing them eliminates the
new warning.
Fixes#2067.
When calling `internal::cast<S, std::complex<T>>(x)`, clang often
generates an implicit conversion warning due to an implicit cast
from type `S` to `T`. This currently affects the following tests:
- `basicstuff`
- `bfloat16_float`
- `cxx11_tensor_casts`
The implicit cast leads to widening/narrowing float conversions.
Widening warnings only seem to be generated by clang (`-Wdouble-promotion`).
To eliminate the warning, we explicitly cast the real-component first
from `S` to `T`. We also adjust tests to use `internal::cast` instead
of `static_cast` when a complex type may be involved.
Starting with ROCm 4.0, the `hipconfig --platform` command will return `amd` (prior return value was `hcc`). Updating the CMakeLists.txt files in the test dirs to account for this change.
Armv8.2-a provides a native half-precision floating point (__fp16 aka.
float16_t). This patch introduces
* __fp16 as underlying type of Eigen::half if this type is available
* the packet types Packet4hf and Packet8hf representing float16x4_t and
float16x8_t respectively
* packet-math for the above packets with corresponding scalar type Eigen::half
The packet-math functionality has been implemented by Ashutosh Sharma
<ashutosh.sharma@amperecomputing.com>.
This closes#1940.
The current `test/geo_alignedbox` tests fail on 32-bit arm due to small floating-point errors.
In particular, the following is not guaranteed to hold:
```
IsometryTransform identity = IsometryTransform::Identity();
BoxType transformedC;
transformedC.extend(c.transformed(identity));
VERIFY(transformedC.contains(c));
```
since `c.transformed(identity)` is ever-so-slightly different from `c`. Instead, we replace this test with one that checks an identity transform is within floating-point precision of `c`.
Also updated the condition on `AlignedBox::transform(...)` to only accept `Affine`, `AffineCompact`, and `Isometry` modes explicitly. Otherwise, invalid combinations of modes would also incorrectly pass the assertion.
PR 181 ( https://gitlab.com/libeigen/eigen/-/merge_requests/181 ) adds `__launch_bounds__(1024)` attribute to GPU kernels, that did not have that attribute explicitly specified.
That PR seems to cause regressions on the CUDA platform. This PR/commit makes the changes in PR 181, to be applicable for HIP only
- Introduce CMake option `EIGEN_SPLIT_TESTSUITE` that allows to divide the single test build target into several subtargets
- Add CI pipeline for merge request that can be run by GitLab's shared runners
- Add nightly CI pipeline
Some platforms define int64_t to be long long even for C++03. If this is
the case we miss the definition of internal::make_unsigned for this
type. If we just define the template we get duplicated definitions
errors for platforms defining int64_t as signed long for C++03.
We need to find a way to distinguish both cases at compile-time.
Starting with ROCm 3.5, the HIP compiler will change from HCC to hip-clang.
This compiler change introduce a change in the default value of the `__launch_bounds__` attribute associated with a GPU kernel. (default value means the value assumed by the compiler as the `__launch_bounds attribute__` value, when it is not explicitly specified by the user)
Currently (i.e. for HIP with ROCm 3.3 and older), the default value is 1024. That changes to 256 with ROCm 3.5 (i.e. hip-clang compiler). As a consequence of this change, if a GPU kernel with a `__luanch_bounds__` attribute of 256 is launched at runtime with a threads_per_block value > 256, it leads to a runtime error. This is leading to a couple of Eigen unit test failures with ROCm 3.5.
This commit adds an explicit `__launch_bounds(1024)__` attribute to every GPU kernel that currently does not have it explicitly specified (and hence will end up getting the default value of 256 with the change to hip-clang)
If we have explicit conversion operators available (C++11) we define
explicit casts from bfloat16 to other types. If not (C++03), we don't
define conversion operators but rely on implicit conversion chains from
bfloat16 over float to other types.
Specialized `bfloat16_impl::float_to_bfloat16_rtne(float)` for normal floating point numbers, infinity and zero, in order to improve the performance of `bfloat16::bfloat16(const T&)` for integer argument types.
A reduction of more than 20% of the runtime duration of conversion from int to bfloat16 was observed, using Visual C++ 2019 on Windows 10.
Conversion from `bfloat16` to `float` and `double` is lossless. It seems natural to allow the conversion to be implicit, as the C++ language also support implicit conversion from a smaller to a larger floating point type.
Intel's OneDLL bfloat16 implementation also has an implicit `operator float()`: https://github.com/oneapi-src/oneDNN/blob/v1.5/src/common/bfloat16.hpp