Commit Graph

2439 Commits

Author SHA1 Message Date
Rasmus Munk Larsen
5297b7162a Make it possible to specify NaN propagation strategy for maxCoeff/minCoeff reductions. 2021-02-25 18:21:21 +00:00
Antonio Sanchez
ecb7b19dfa Disable new/delete test for HIP 2021-02-25 08:04:05 -08:00
Antonio Sanchez
5908aeeaba Fix CUDA device new and delete, and add test.
HIP does not support new/delete on device, so test is skipped.
2021-02-24 11:31:41 -08:00
Antonio Sanchez
119763cf38 Eliminate CMake FindPackageHandleStandardArgs warnings.
CMake complains that the package name does not match when the case
differs, e.g.:
```
CMake Warning (dev) at /usr/share/cmake-3.18/Modules/FindPackageHandleStandardArgs.cmake:273 (message):
  The package name passed to `find_package_handle_standard_args` (UMFPACK)
  does not match the name of the calling package (Umfpack).  This can lead to
  problems in calling code that expects `find_package` result variables
  (e.g., `_FOUND`) to follow a certain pattern.
Call Stack (most recent call first):
  cmake/FindUmfpack.cmake:50 (find_package_handle_standard_args)
  bench/spbench/CMakeLists.txt:24 (find_package)
This warning is for project developers.  Use -Wno-dev to suppress it.
```
Here we rename the libraries to match their true cases.
2021-02-24 09:52:05 +00:00
Adam Shapiro
2ac0b78739 Fixed sparse conservativeResize() when both num cols and rows decreased.
The previous implementation caused a buffer overflow trying to calculate non-
zero counts for columns that no longer exist.
2021-02-23 21:32:39 +00:00
Christoph Hertzberg
ce4af0b38f Missing change regarding #1910 2021-02-19 20:51:35 +01:00
Christoph Hertzberg
a7749c09bc Bug #1910: Make SparseCholesky work for RowMajor matrices 2021-02-19 19:36:18 +01:00
Rasmus Munk Larsen
be0574e215 New accurate algorithm for pow(x,y). This version is accurate to 1.4 ulps for float, while still being 10x faster than std::pow for AVX512. A future change will introduce a specialization for double. 2021-02-17 02:50:32 +00:00
Antonio Sanchez
7ff0b7a980 Updated pfrexp implementation.
The original implementation fails for 0, denormals, inf, and NaN.

See #2150
2021-02-17 02:23:24 +00:00
Antonio Sanchez
4cb563a01e Fix ldexp implementations.
The previous implementations produced garbage values if the exponent did
not fit within the exponent bits.  See #2131 for a complete discussion,
and !375 for other possible implementations.

Here we implement the 4-factor version. See `pldexp_impl` in
`GenericPacketMathFunctions.h` for a full description.

The SSE `pcmp*` methods were moved down since `pcmp_le<Packet4i>`
requires `por`.

Left as a "TODO" is to delegate to a faster version if we know the
exponent does fit within the exponent bits.

Fixes #2131.
2021-02-10 22:45:41 +00:00
Ralf Hannemann-Tamas
984d010b7b add specialization of check_sparse_solving() for SuperLU solver, in order to test adjoint and transpose solves 2021-02-08 22:00:31 +00:00
Rasmus Munk Larsen
6e3b795f81 Add more tests for pow and fix a corner case for huge exponent where the result is always zero or infinite unless x is one. 2021-02-05 16:58:49 -08:00
Gael Guennebaud
0668c68b03 Allow for negative strides.
Note that using a stride of -1 is still not possible because it would
clash with the definition of Eigen::Dynamic.

This fixes #747.
2021-01-27 23:32:12 +01:00
Samir Benmendil
288d456c29 Replace language_support module with builtin CheckLanguage
The workaround_9220 function was introduced a long time ago to
workaround a CMake issue with enable_language(OPTIONAL). Since then
CMake has clarified that the OPTIONAL keywords has not been
implemented[0].

A CheckLanguage module is now provided with CMake to check if a language
can be enabled. Use that instead.

[0] https://cmake.org/cmake/help/v3.18/command/enable_language.html
2021-01-27 13:26:40 +00:00
Antonio Sanchez
4c42d5ee41 Eliminate implicit conversion warning in test/array_cwise.cpp 2021-01-23 11:54:00 -08:00
Antonio Sanchez
e0d13ead90 Replace std::isnan with numext::isnan for c++03 2021-01-23 11:02:35 -08:00
Antonio Sanchez
f0e46ed5d4 Fix pow and other cwise ops for half/bfloat16.
The new `generic_pow` implementation was failing for half/bfloat16 since
their construction from int/float is not `constexpr`. Modified
in `GenericPacketMathFunctions` to remove `constexpr`.

While adding tests for half/bfloat16, found other issues related to
implicit conversions.

Also needed to implement `numext::arg` for non-integer, non-complex,
non-float/double/long double types.  These seem to be  implicitly
converted to `std::complex<T>`, which then fails for half/bfloat16.
2021-01-22 11:10:54 -08:00
Antonio Sanchez
f19bcffee6 Specialize std::complex operators for use on GPU device.
NVCC and older versions of clang do not fully support `std::complex` on device,
leading to either compile errors (Cannot call `__host__` function) or worse,
runtime errors (Illegal instruction).  For most functions, we can
implement specialized `numext` versions. Here we specialize the standard
operators (with the exception of stream operators and member function operators
with a scalar that are already specialized in `<complex>`) so they can be used
in device code as well.

To import these operators into the current scope, use
`EIGEN_USING_STD_COMPLEX_OPERATORS`. By default, these are imported into
the `Eigen`, `Eigen:internal`, and `Eigen::numext` namespaces.

This allow us to remove specializations of the
sum/difference/product/quotient ops, and allow us to treat complex
numbers like most other scalars (e.g. in tests).
2021-01-22 18:19:19 +00:00
Antonio Sanchez
b2126fd6b5 Fix pfrexp/pldexp for half.
The recent addition of vectorized pow (!330) relies on `pfrexp` and
`pldexp`.  This was missing for `Eigen::half` and `Eigen::bfloat16`.
Adding tests for these packet ops also exposed an issue with handling
negative values in `pfrexp`, returning an incorrect exponent.

Added the missing implementations, corrected the exponent in `pfrexp1`,
and added `packetmath` tests.
2021-01-21 19:32:28 +00:00
Antonio Sanchez
25d8498f8b Fix stable_norm_1 test.
Test enters an infinite loop if size is 1x1 when choosing to select
unique indices for adding `inf` and `NaN` to the input. Here we
revert to non-unique indices, and split the `hypotNorm` check into
two cases: one where both `inf` and `NaN` are added, and one where
only `NaN` is added.
2021-01-21 09:44:42 -08:00
Rasmus Munk Larsen
cdd8fdc32e Vectorize pow(x, y). This closes https://gitlab.com/libeigen/eigen/-/issues/2085, which also contains a description of the algorithm.
I ran some testing (comparing to `std::pow(double(x), double(y)))` for `x` in the set of all (positive) floats in the interval `[std::sqrt(std::numeric_limits<float>::min()), std::sqrt(std::numeric_limits<float>::max())]`, and `y` in `{2, sqrt(2), -sqrt(2)}` I get the following error statistics:

```
max_rel_error = 8.34405e-07
rms_rel_error = 2.76654e-07
```

If I widen the range to all normal float I see lower accuracy for arguments where the result is subnormal, e.g. for `y = sqrt(2)`:

```
max_rel_error = 0.666667
rms = 6.8727e-05
count = 1335165689
argmax = 2.56049e-32, 2.10195e-45 != 1.4013e-45
```

which seems reasonable, since these results are subnormals with only couple of significant bits left.
2021-01-18 13:25:16 +00:00
Antonio Sanchez
bde6741641 Improved std::complex sqrt and rsqrt.
Replaces `std::sqrt` with `complex_sqrt` for all platforms (previously
`complex_sqrt` was only used for CUDA and MSVC), and implements
custom `complex_rsqrt`.

Also introduces `numext::rsqrt` to simplify implementation, and modified
`numext::hypot` to adhere to IEEE IEC 6059 for special cases.

The `complex_sqrt` and `complex_rsqrt` implementations were found to be
significantly faster than `std::sqrt<std::complex<T>>` and
`1/numext::sqrt<std::complex<T>>`.

Benchmark file attached.
```
GCC 10, Intel Xeon, x86_64:
---------------------------------------------------------------------------
Benchmark                                 Time             CPU   Iterations
---------------------------------------------------------------------------
BM_Sqrt<std::complex<float>>           9.21 ns         9.21 ns     73225448
BM_StdSqrt<std::complex<float>>        17.1 ns         17.1 ns     40966545
BM_Sqrt<std::complex<double>>          8.53 ns         8.53 ns     81111062
BM_StdSqrt<std::complex<double>>       21.5 ns         21.5 ns     32757248
BM_Rsqrt<std::complex<float>>          10.3 ns         10.3 ns     68047474
BM_DivSqrt<std::complex<float>>        16.3 ns         16.3 ns     42770127
BM_Rsqrt<std::complex<double>>         11.3 ns         11.3 ns     61322028
BM_DivSqrt<std::complex<double>>       16.5 ns         16.5 ns     42200711

Clang 11, Intel Xeon, x86_64:
---------------------------------------------------------------------------
Benchmark                                 Time             CPU   Iterations
---------------------------------------------------------------------------
BM_Sqrt<std::complex<float>>           7.46 ns         7.45 ns     90742042
BM_StdSqrt<std::complex<float>>        16.6 ns         16.6 ns     42369878
BM_Sqrt<std::complex<double>>          8.49 ns         8.49 ns     81629030
BM_StdSqrt<std::complex<double>>       21.8 ns         21.7 ns     31809588
BM_Rsqrt<std::complex<float>>          8.39 ns         8.39 ns     82933666
BM_DivSqrt<std::complex<float>>        14.4 ns         14.4 ns     48638676
BM_Rsqrt<std::complex<double>>         9.83 ns         9.82 ns     70068956
BM_DivSqrt<std::complex<double>>       15.7 ns         15.7 ns     44487798

Clang 9, Pixel 2, aarch64:
---------------------------------------------------------------------------
Benchmark                                 Time             CPU   Iterations
---------------------------------------------------------------------------
BM_Sqrt<std::complex<float>>           24.2 ns         24.1 ns     28616031
BM_StdSqrt<std::complex<float>>         104 ns          103 ns      6826926
BM_Sqrt<std::complex<double>>          31.8 ns         31.8 ns     22157591
BM_StdSqrt<std::complex<double>>        128 ns          128 ns      5437375
BM_Rsqrt<std::complex<float>>          31.9 ns         31.8 ns     22384383
BM_DivSqrt<std::complex<float>>        99.2 ns         98.9 ns      7250438
BM_Rsqrt<std::complex<double>>         46.0 ns         45.8 ns     15338689
BM_DivSqrt<std::complex<double>>        119 ns          119 ns      5898944
```
2021-01-17 08:50:57 -08:00
Antonio Sanchez
f149e0ebc3 Fix MSVC complex sqrt and packetmath test.
MSVC incorrectly handles `inf` cases for `std::sqrt<std::complex<T>>`.
Here we replace it with a custom version (currently used on GPU).

Also fixed the `packetmath` test, which previously skipped several
corner cases since `CHECK_CWISE1` only tests the first `PacketSize`
elements.
2021-01-08 01:17:19 +00:00
Antonio Sanchez
8d9cfba799 Fix rand test for MSVC.
MSVC's uniform random number generator is not quite as uniform as
others, requiring a slightly wider threshold on the histogram test.
After inspecting histograms for several runs, there's no obvious
bias -- just some bins end up having slightly more less elements
(often > 2% but less than 2.5%).
2021-01-07 12:48:40 -08:00
Essex Edwards
e741b43668 Make Transform::computeRotationScaling(0,&S) continuous 2021-01-07 17:45:14 +00:00
Antonio Sanchez
bb1de9dbde Fix Ref Stride checks.
The existing `Ref` class failed to consider cases where the Ref's
`Stride` setting *could* match the underlying referred object's stride,
but **didn't** at runtime.  This led to trying to set invalid stride values,
causing runtime failures in some cases, and garbage due to mismatched
strides in others.

Here we add the missing runtime checks.  This involves computing the
strides necessary to align with the referred object's storage, and
verifying we can actually set those strides at runtime.

In the `const` case, if it *may* be possible to refer to the original
storage at compile-time but fails at runtime, then we defer to the
`construct(...)` method that makes a copy.

Added more tests to check these cases.

Fixes #2093.
2021-01-05 10:41:25 -08:00
Christoph Hertzberg
12dda34b15 Eliminate boolean product warnings by factoring out a
`combine_scalar_factors` helper function.
2021-01-05 18:15:30 +00:00
Antonio Sanchez
070d303d56 Add CUDA complex sqrt.
This is to support scalar `sqrt` of complex numbers `std::complex<T>` on
device, requested by Tensorflow folks.

Technically `std::complex` is not supported by NVCC on device
(though it is by clang), so the default `sqrt(std::complex<T>)` function only
works on the host. Here we create an overload to add back the
functionality.

Also modified the CMake file to add `--relaxed-constexpr` (or
equivalent) flag for NVCC to allow calling constexpr functions from
device functions, and added support for specifying compute architecture for
NVCC (was already available for clang).
2020-12-22 23:25:23 -08:00
Antonio Sanchez
c6efc4e0ba Replace M_LOG2E and M_LN2 with custom macros.
For these to exist we would need to define `_USE_MATH_DEFINES` before
`cmath` or `math.h` is first included.  However, we don't
control the include order for projects outside Eigen, so even defining
the macro in `Eigen/Core` does not fix the issue for projects that
end up including `<cmath>` before Eigen does (explicitly or transitively).

To fix this, we define `EIGEN_LOG2E` and `EIGEN_LN2` ourselves.
2020-12-11 14:34:31 -08:00
Rasmus Munk Larsen
125cc9a5df Implement vectorized complex square root.
Closes #1905

Measured speedup for sqrt of `complex<float>` on Skylake:

SSE:
```
name                      old time/op             new time/op  delta
BM_eigen_sqrt_ctype/1     49.4ns ± 0%             54.3ns ± 0%  +10.01%
BM_eigen_sqrt_ctype/8      332ns ± 0%               50ns ± 1%  -84.97%
BM_eigen_sqrt_ctype/64    2.81µs ± 1%             0.38µs ± 0%  -86.49%
BM_eigen_sqrt_ctype/512   23.8µs ± 0%              3.0µs ± 0%  -87.32%
BM_eigen_sqrt_ctype/4k     202µs ± 0%               24µs ± 2%  -88.03%
BM_eigen_sqrt_ctype/32k   1.63ms ± 0%             0.19ms ± 0%  -88.18%
BM_eigen_sqrt_ctype/256k  13.0ms ± 0%              1.5ms ± 1%  -88.20%
BM_eigen_sqrt_ctype/1M    52.1ms ± 0%              6.2ms ± 0%  -88.18%
```

AVX2:
```
name                      old cpu/op  new cpu/op  delta
BM_eigen_sqrt_ctype/1     53.6ns ± 0%  55.6ns ± 0%   +3.71%
BM_eigen_sqrt_ctype/8      334ns ± 0%    27ns ± 0%  -91.86%
BM_eigen_sqrt_ctype/64    2.79µs ± 0%  0.22µs ± 2%  -92.28%
BM_eigen_sqrt_ctype/512   23.8µs ± 1%   1.7µs ± 1%  -92.81%
BM_eigen_sqrt_ctype/4k     201µs ± 0%    14µs ± 1%  -93.24%
BM_eigen_sqrt_ctype/32k   1.62ms ± 0%  0.11ms ± 1%  -93.29%
BM_eigen_sqrt_ctype/256k  13.0ms ± 0%   0.9ms ± 1%  -93.31%
BM_eigen_sqrt_ctype/1M    52.0ms ± 0%   3.5ms ± 1%  -93.31%
```

AVX512:
```
name                      old cpu/op  new cpu/op  delta
BM_eigen_sqrt_ctype/1     53.7ns ± 0%  56.2ns ± 1%   +4.75%
BM_eigen_sqrt_ctype/8      334ns ± 0%    18ns ± 2%  -94.63%
BM_eigen_sqrt_ctype/64    2.79µs ± 0%  0.12µs ± 1%  -95.54%
BM_eigen_sqrt_ctype/512   23.9µs ± 1%   1.0µs ± 1%  -95.89%
BM_eigen_sqrt_ctype/4k     202µs ± 0%     8µs ± 1%  -96.13%
BM_eigen_sqrt_ctype/32k   1.63ms ± 0%  0.06ms ± 1%  -96.15%
BM_eigen_sqrt_ctype/256k  13.0ms ± 0%   0.5ms ± 4%  -96.11%
BM_eigen_sqrt_ctype/1M    52.1ms ± 0%   2.0ms ± 1%  -96.13%
```
2020-12-08 18:13:35 -08:00
Rasmus Munk Larsen
f9fac1d5b0 Add log2() to Eigen. 2020-12-04 21:45:09 +00:00
Rasmus Munk Larsen
f23dc5b971 Revert "Add log2() operator to Eigen"
This reverts commit 4d91519a9b.
2020-12-03 14:32:45 -08:00
Rasmus Munk Larsen
4d91519a9b Add log2() operator to Eigen 2020-12-03 22:31:44 +00:00
Antonio Sanchez
eb4d4ae070 Include chrono in main for c++11.
Hack to fix tensor tests, since min/max are overridden by `main.h`.
2020-12-03 11:27:32 -08:00
Antonio Sanchez
89f90b585d AVX512 missing ops.
This allows the `packetmath` tests to pass for AVX512 on skylake.
Made `half` and `bfloat16` consistent in terms of ops they support.

Note the `log` tests are currently disabled for `bfloat16` since
they fail due to poor precision (they were previously disabled for
`Packet8bf` via test function specialization -- I just removed that
specialization and disabled it in the generic test).
2020-11-30 16:28:57 +00:00
Bowie Owens
9842366bba Make inclusion of doc sub-directory optional by adjusting options.
Allows exclusion of doc and related targets to help when using eigen via add_subdirectory().

Requested by:

https://gitlab.com/libeigen/eigen/-/issues/1842

Also required making EIGEN_TEST_BUILD_DOCUMENTATION a dependent option on EIGEN_BUILD_DOC. This ensures documentation targets are properly defined when EIGEN_TEST_BUILD_DOCUMENTATION is ON.
2020-11-27 08:11:49 +11:00
Rasmus Munk Larsen
79818216ed Revert "Fix Half NaN definition and test."
This reverts commit c770746d70.
2020-11-24 12:57:28 -08:00
Rasmus Munk Larsen
c770746d70 Fix Half NaN definition and test.
The `half_float` test was failing with `-mcpu=cortex-a55` (native `__fp16`) due
to a bad NaN bit-pattern comparison (in the case of casting a float to `__fp16`,
the signaling `NaN` is quieted). There was also an inconsistency between
`numeric_limits<half>::quiet_NaN()` and `NumTraits::quiet_NaN()`.  Here we
correct the inconsistency and compare NaNs according to the IEEE 754
definition.

Also modified the `bfloat16_float` test to match.

Tested with `cortex-a53` and `cortex-a55`.
2020-11-24 20:53:07 +00:00
Antonio Sanchez
a3b300f1af Implement missing AVX half ops.
Minimal implementation of AVX `Eigen::half` ops to bring in line
with `bfloat16`.  Allows `packetmath_13` to pass.

Also adjusted `bfloat16` packet traits to match the supported set
of ops (e.g. Bessel is not actually implemented).
2020-11-24 16:46:41 +00:00
Antonio Sanchez
38abf2be42 Fix Half NaN definition and test.
The `half_float` test was failing with `-mcpu=cortex-a55` (native `__fp16`) due
to a bad NaN bit-pattern comparison (in the case of casting a float to `__fp16`,
the signaling `NaN` is quieted). There was also an inconsistency between
`numeric_limits<half>::quiet_NaN()` and `NumTraits::quiet_NaN()`.  Here we
correct the inconsistency and compare NaNs according to the IEEE 754
definition.

Also modified the `bfloat16_float` test to match.

Tested with `cortex-a53` and `cortex-a55`.
2020-11-23 14:13:59 -08:00
Antonio Sanchez
4cf01d2cf5 Update AVX half packets, disable test.
The AVX half implementation is incomplete, causing the `packetmath_13` test
to fail.  This disables the test.

Also refactored the existing AVX implementation to use `bit_cast`
instead of direct access to `.x`.
2020-11-21 09:05:10 -08:00
Antonio Sanchez
a8fdcae55d Fix sparse_extra_3, disable counting temporaries for testing DynamicSparseMatrix.
Multiplication of column-major `DynamicSparseMatrix`es involves three
temporaries:
- two for transposing twice to sort the coefficients
(`ConservativeSparseSparseProduct.h`, L160-161)
- one for a final copy assignment (`SparseAssign.h`, L108)
The latter is avoided in an optimization for `SparseMatrix`.

Since `DynamicSparseMatrix` is deprecated in favor of `SparseMatrix`, it's not
worth the effort to optimize further, so I simply disabled counting
temporaries via a macro.

Note that due to the inclusion of `sparse_product.cpp`, the `sparse_extra`
tests actually re-run all the original `sparse_product` tests as well.

We may want to simply drop the `DynamicSparseMatrix` tests altogether, which
would eliminate the test duplication.

Related to #2048
2020-11-18 23:15:33 +00:00
David Tellenbach
11e4056f6b Re-enable Arm Neon Eigen::half packets of size 8
- Add predux_half_dowto4
- Remove explicit casts in Half.h to match the behaviour of BFloat16.h
- Enable more packetmath tests for Eigen::half
2020-11-18 23:02:21 +00:00
Antonio Sanchez
17268b155d Add bit_cast for half/bfloat to/from uint16_t, fix TensorRandom
The existing `TensorRandom.h` implementation makes the assumption that
`half` (`bfloat16`) has a `uint16_t` member `x` (`value`), which is not
always true. This currently fails on arm64, where `x` has type `__fp16`.
Added `bit_cast` specializations to allow casting to/from `uint16_t`
for both `half` and `bfloat16`.  Also added tests in
`half_float`, `bfloat16_float`, and `cxx11_tensor_random` to catch
these errors in the future.
2020-11-18 20:32:35 +00:00
Antonio Sanchez
41d5d5334b Initialize primitives to fix -Wuninitialized-const-reference.
The `meta` test generates warnings with the latest version of clang due
to passing uninitialized variables as const reference arguments.
```
test/meta.cpp:102:45: error: variable 'f' is uninitialized when passed as a const reference argument here [-Werror,-Wuninitialized-const-reference]
    VERIFY(( check_is_convertible(a.dot(b), f) ));
```
We don't actually use the variables, but initializing them eliminates the
new warning.

Fixes #2067.
2020-11-18 20:23:20 +00:00
Antonio Sanchez
8e9cc5b10a Eliminate double-promotion warnings.
Clang currently complains about implicit conversions, e.g.
```
test/packetmath.cpp:680:59: warning: implicit conversion increases floating-point precision: 'typename Eigen::internal::random_retval<typename Eigen::internal::global_math_functions_filtering_base<double>::type>::type' (aka 'double') to 'long double' [-Wdouble-promotion]
          data1[0] = Scalar((2 * k + k1) * EIGEN_PI / 2 * internal::random<double>(0.8, 1.2));
                                                        ~ ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
test/packetmath.cpp:681:40: warning: implicit conversion increases floating-point precision: 'float' to 'long double' [-Wdouble-promotion]
          data1[1] = Scalar((2 * k + 2 + k1) * EIGEN_PI / 2 * internal::random<double>(0.8, 1.2));
```

Modified to explicitly cast to double.
2020-11-16 10:39:09 -08:00
Antonio Sanchez
bb69a8db5d Explicit casts of S -> std::complex<T>
When calling `internal::cast<S, std::complex<T>>(x)`, clang often
generates an implicit conversion warning due to an implicit cast
from type `S` to `T`.  This currently affects the following tests:
- `basicstuff`
- `bfloat16_float`
- `cxx11_tensor_casts`

The implicit cast leads to widening/narrowing float conversions.
Widening warnings only seem to be generated by clang (`-Wdouble-promotion`).

To eliminate the warning, we explicitly cast the real-component first
from `S` to `T`.  We also adjust tests to use `internal::cast` instead
of `static_cast` when a complex type may be involved.
2020-11-14 05:50:42 +00:00
Christoph Hertzberg
90f6d9d23e Suppress ignored-attributes warning (same as in vectorization_logic). Remove redundant include and using namespace. 2020-11-13 16:21:53 +01:00
Everton Constantino
348a48682e Fix erroneous forward declaration of boost nvp. 2020-11-10 13:07:34 -03:00
Deven Desai
9d11e2c03e CMakefile update for ROCm 4.0
Starting with ROCm 4.0, the `hipconfig --platform` command will return `amd` (prior return value was `hcc`). Updating the CMakeLists.txt files in the test dirs to account for this change.
2020-10-29 18:06:31 +00:00