The new `generic_pow` implementation was failing for half/bfloat16 since
their construction from int/float is not `constexpr`. Modified
in `GenericPacketMathFunctions` to remove `constexpr`.
While adding tests for half/bfloat16, found other issues related to
implicit conversions.
Also needed to implement `numext::arg` for non-integer, non-complex,
non-float/double/long double types. These seem to be implicitly
converted to `std::complex<T>`, which then fails for half/bfloat16.
NVCC and older versions of clang do not fully support `std::complex` on device,
leading to either compile errors (Cannot call `__host__` function) or worse,
runtime errors (Illegal instruction). For most functions, we can
implement specialized `numext` versions. Here we specialize the standard
operators (with the exception of stream operators and member function operators
with a scalar that are already specialized in `<complex>`) so they can be used
in device code as well.
To import these operators into the current scope, use
`EIGEN_USING_STD_COMPLEX_OPERATORS`. By default, these are imported into
the `Eigen`, `Eigen:internal`, and `Eigen::numext` namespaces.
This allow us to remove specializations of the
sum/difference/product/quotient ops, and allow us to treat complex
numbers like most other scalars (e.g. in tests).
The recent addition of vectorized pow (!330) relies on `pfrexp` and
`pldexp`. This was missing for `Eigen::half` and `Eigen::bfloat16`.
Adding tests for these packet ops also exposed an issue with handling
negative values in `pfrexp`, returning an incorrect exponent.
Added the missing implementations, corrected the exponent in `pfrexp1`,
and added `packetmath` tests.
Test enters an infinite loop if size is 1x1 when choosing to select
unique indices for adding `inf` and `NaN` to the input. Here we
revert to non-unique indices, and split the `hypotNorm` check into
two cases: one where both `inf` and `NaN` are added, and one where
only `NaN` is added.
I ran some testing (comparing to `std::pow(double(x), double(y)))` for `x` in the set of all (positive) floats in the interval `[std::sqrt(std::numeric_limits<float>::min()), std::sqrt(std::numeric_limits<float>::max())]`, and `y` in `{2, sqrt(2), -sqrt(2)}` I get the following error statistics:
```
max_rel_error = 8.34405e-07
rms_rel_error = 2.76654e-07
```
If I widen the range to all normal float I see lower accuracy for arguments where the result is subnormal, e.g. for `y = sqrt(2)`:
```
max_rel_error = 0.666667
rms = 6.8727e-05
count = 1335165689
argmax = 2.56049e-32, 2.10195e-45 != 1.4013e-45
```
which seems reasonable, since these results are subnormals with only couple of significant bits left.
MSVC incorrectly handles `inf` cases for `std::sqrt<std::complex<T>>`.
Here we replace it with a custom version (currently used on GPU).
Also fixed the `packetmath` test, which previously skipped several
corner cases since `CHECK_CWISE1` only tests the first `PacketSize`
elements.
MSVC's uniform random number generator is not quite as uniform as
others, requiring a slightly wider threshold on the histogram test.
After inspecting histograms for several runs, there's no obvious
bias -- just some bins end up having slightly more less elements
(often > 2% but less than 2.5%).
The existing `Ref` class failed to consider cases where the Ref's
`Stride` setting *could* match the underlying referred object's stride,
but **didn't** at runtime. This led to trying to set invalid stride values,
causing runtime failures in some cases, and garbage due to mismatched
strides in others.
Here we add the missing runtime checks. This involves computing the
strides necessary to align with the referred object's storage, and
verifying we can actually set those strides at runtime.
In the `const` case, if it *may* be possible to refer to the original
storage at compile-time but fails at runtime, then we defer to the
`construct(...)` method that makes a copy.
Added more tests to check these cases.
Fixes#2093.
This is to support scalar `sqrt` of complex numbers `std::complex<T>` on
device, requested by Tensorflow folks.
Technically `std::complex` is not supported by NVCC on device
(though it is by clang), so the default `sqrt(std::complex<T>)` function only
works on the host. Here we create an overload to add back the
functionality.
Also modified the CMake file to add `--relaxed-constexpr` (or
equivalent) flag for NVCC to allow calling constexpr functions from
device functions, and added support for specifying compute architecture for
NVCC (was already available for clang).
For these to exist we would need to define `_USE_MATH_DEFINES` before
`cmath` or `math.h` is first included. However, we don't
control the include order for projects outside Eigen, so even defining
the macro in `Eigen/Core` does not fix the issue for projects that
end up including `<cmath>` before Eigen does (explicitly or transitively).
To fix this, we define `EIGEN_LOG2E` and `EIGEN_LN2` ourselves.
This allows the `packetmath` tests to pass for AVX512 on skylake.
Made `half` and `bfloat16` consistent in terms of ops they support.
Note the `log` tests are currently disabled for `bfloat16` since
they fail due to poor precision (they were previously disabled for
`Packet8bf` via test function specialization -- I just removed that
specialization and disabled it in the generic test).
Allows exclusion of doc and related targets to help when using eigen via add_subdirectory().
Requested by:
https://gitlab.com/libeigen/eigen/-/issues/1842
Also required making EIGEN_TEST_BUILD_DOCUMENTATION a dependent option on EIGEN_BUILD_DOC. This ensures documentation targets are properly defined when EIGEN_TEST_BUILD_DOCUMENTATION is ON.
The `half_float` test was failing with `-mcpu=cortex-a55` (native `__fp16`) due
to a bad NaN bit-pattern comparison (in the case of casting a float to `__fp16`,
the signaling `NaN` is quieted). There was also an inconsistency between
`numeric_limits<half>::quiet_NaN()` and `NumTraits::quiet_NaN()`. Here we
correct the inconsistency and compare NaNs according to the IEEE 754
definition.
Also modified the `bfloat16_float` test to match.
Tested with `cortex-a53` and `cortex-a55`.
Minimal implementation of AVX `Eigen::half` ops to bring in line
with `bfloat16`. Allows `packetmath_13` to pass.
Also adjusted `bfloat16` packet traits to match the supported set
of ops (e.g. Bessel is not actually implemented).
The `half_float` test was failing with `-mcpu=cortex-a55` (native `__fp16`) due
to a bad NaN bit-pattern comparison (in the case of casting a float to `__fp16`,
the signaling `NaN` is quieted). There was also an inconsistency between
`numeric_limits<half>::quiet_NaN()` and `NumTraits::quiet_NaN()`. Here we
correct the inconsistency and compare NaNs according to the IEEE 754
definition.
Also modified the `bfloat16_float` test to match.
Tested with `cortex-a53` and `cortex-a55`.
The AVX half implementation is incomplete, causing the `packetmath_13` test
to fail. This disables the test.
Also refactored the existing AVX implementation to use `bit_cast`
instead of direct access to `.x`.
Multiplication of column-major `DynamicSparseMatrix`es involves three
temporaries:
- two for transposing twice to sort the coefficients
(`ConservativeSparseSparseProduct.h`, L160-161)
- one for a final copy assignment (`SparseAssign.h`, L108)
The latter is avoided in an optimization for `SparseMatrix`.
Since `DynamicSparseMatrix` is deprecated in favor of `SparseMatrix`, it's not
worth the effort to optimize further, so I simply disabled counting
temporaries via a macro.
Note that due to the inclusion of `sparse_product.cpp`, the `sparse_extra`
tests actually re-run all the original `sparse_product` tests as well.
We may want to simply drop the `DynamicSparseMatrix` tests altogether, which
would eliminate the test duplication.
Related to #2048
The existing `TensorRandom.h` implementation makes the assumption that
`half` (`bfloat16`) has a `uint16_t` member `x` (`value`), which is not
always true. This currently fails on arm64, where `x` has type `__fp16`.
Added `bit_cast` specializations to allow casting to/from `uint16_t`
for both `half` and `bfloat16`. Also added tests in
`half_float`, `bfloat16_float`, and `cxx11_tensor_random` to catch
these errors in the future.
The `meta` test generates warnings with the latest version of clang due
to passing uninitialized variables as const reference arguments.
```
test/meta.cpp:102:45: error: variable 'f' is uninitialized when passed as a const reference argument here [-Werror,-Wuninitialized-const-reference]
VERIFY(( check_is_convertible(a.dot(b), f) ));
```
We don't actually use the variables, but initializing them eliminates the
new warning.
Fixes#2067.
When calling `internal::cast<S, std::complex<T>>(x)`, clang often
generates an implicit conversion warning due to an implicit cast
from type `S` to `T`. This currently affects the following tests:
- `basicstuff`
- `bfloat16_float`
- `cxx11_tensor_casts`
The implicit cast leads to widening/narrowing float conversions.
Widening warnings only seem to be generated by clang (`-Wdouble-promotion`).
To eliminate the warning, we explicitly cast the real-component first
from `S` to `T`. We also adjust tests to use `internal::cast` instead
of `static_cast` when a complex type may be involved.
Starting with ROCm 4.0, the `hipconfig --platform` command will return `amd` (prior return value was `hcc`). Updating the CMakeLists.txt files in the test dirs to account for this change.
Armv8.2-a provides a native half-precision floating point (__fp16 aka.
float16_t). This patch introduces
* __fp16 as underlying type of Eigen::half if this type is available
* the packet types Packet4hf and Packet8hf representing float16x4_t and
float16x8_t respectively
* packet-math for the above packets with corresponding scalar type Eigen::half
The packet-math functionality has been implemented by Ashutosh Sharma
<ashutosh.sharma@amperecomputing.com>.
This closes#1940.
The current `test/geo_alignedbox` tests fail on 32-bit arm due to small floating-point errors.
In particular, the following is not guaranteed to hold:
```
IsometryTransform identity = IsometryTransform::Identity();
BoxType transformedC;
transformedC.extend(c.transformed(identity));
VERIFY(transformedC.contains(c));
```
since `c.transformed(identity)` is ever-so-slightly different from `c`. Instead, we replace this test with one that checks an identity transform is within floating-point precision of `c`.
Also updated the condition on `AlignedBox::transform(...)` to only accept `Affine`, `AffineCompact`, and `Isometry` modes explicitly. Otherwise, invalid combinations of modes would also incorrectly pass the assertion.