The former is very low level and generic. The later abstarct the former for dense expressions. This refactoring permits
to get rid of the very ugly SwapWrapper and SelfCwiseBinaryOp classes.
In the future, this will also permit to simplify all these evaluation loops and perhaps to reuse them for reduxions.
That will also permit to specialize for operations like expr1 += expr2 outside Eigen, and so for any kind
of expressions (dense, sparse, tensor, etc.)
- Organize the documentation into "chapters".
- Each chapter include many documentation pages, reference pages organized as modules, and a quick reference page.
- The "Chapters" tree is created using the defgroup/ingroup mechanism, even for the documentation pages (i.e., .dox files for which I added an \eigenManualPage macro that we can switch between \page or \defgroup ).
- Add a "General topics" entry for all pages that do not fit well in the previous "chapters".
- The highlevel struture is managed by a new eigendoxy_layout.xml file.
- remove the "index" and quite useless pages (namespace list, class hierarchy, member list, file list, etc.)
- add the javascript search-engine.
- add the "treeview" panel.
- remove \tableofcontents (replace them by a custom \eigenAutoToc macro to be able to easily re-enable if needed).
- add javascript to automatically generate a TOC from the h1/h2 tags of the current page, and put the TOC in the left side panel.
- overload various javascript function generated by doxygen to:
- remove the root of the treeview
- remove links to section/subsection from the treeview
- automatically expand the "Chapters" section
- automatically expand the current section
- adjust the height of the treeview to take into account the TOC
- always use the default .css file, eigendoxy.css now only includes our modifications
- use Doxyfile to specify our logo
- remove cross references to unsupported modules (temporarily)
* Copy implementation from CoeffBasedProduct.
* Copy implementation from GeneralProduct in InnerProduct case.
* For GeneralProduct in other cases, call the evalTo() member function with
expression objects in constructor of evaluator.