This changeset also includes:
* add HouseholderSequence::conjugateIf
* define int as the StorageIndex type for all dense solvers
* dedicated unit tests, including assertion checking
* _check_solve_assertion(): this method can be implemented in derived solver classes to implement custom checks
* CompleteOrthogonalDecompositions: add applyZOnTheLeftInPlace, fix scalar type in applyZAdjointOnTheLeftInPlace(), add missing assertions
* Cholesky: add missing assertions
* FullPivHouseholderQR: Corrected Scalar type in _solve_impl()
* BDCSVD: Unambiguous return type for ternary operator
* SVDBase: Corrected Scalar type in _solve_impl()
This provide several advantages:
- more flexibility in designing unit tests
- unit tests can be glued to speed up compilation
- unit tests are compiled with same predefined macros, which is a requirement for zapcc
- remove most of the metaprogramming kung fu in MathFunctions.h (only keep functions that differs from the std)
- remove the overloads for array expression that were in the std namespace
Renamed meta_{true|false} to {true|false}_type, meta_if to conditional, is_same_type to is_same, un{ref|pointer|const} to remove_{reference|pointer|const} and makeconst to add_const.
Changed boolean type 'ret' member to 'value'.
Changed 'ret' members refering to types to 'type'.
Adapted all code occurences.
- Updated unit tests to check above constructor.
- In the compute() method of decompositions: Made temporary matrices/vectors class members to avoid heap allocations during compute() (when dynamic matrices are used, of course).
These changes can speed up decomposition computation time when a solver instance is used to solve multiple same-sized problems. An added benefit is that the compute() method can now be invoked in contexts were heap allocations are forbidden, such as in real-time control loops.
CAVEAT: Not all of the decompositions in the Eigenvalues module have a heap-allocation-free compute() method. A future patch may address this issue, but some required API changes need to be incorporated first.
* be aware of number of actual householder vectors
(optimization in non-full-rank case, no behavior change)
* fix applyThisOnTheRight, it was using k instead of actual_k
* QR: rename matrixQ() to householderQ() where applicable
* renaming, e.g. LU ---> FullPivLU
* split tests framework: more robust, e.g. dont generate empty tests if a number is skipped
* make all remaining tests use that splitting, as needed.
* Fix 4x4 inversion (see stable branch)
* Transform::inverse() and geo_transform test : adapt to new inverse() API, it was also trying to instantiate inverse() for 3x4 matrices.
* CMakeLists: more robust regexp to parse the version number
* misc fixes in unit tests
For Colpiv that was just changing MatrixQType to MatrixType in the instantiation of HouseholderSequence.
For HouseholderQR I also re-ported the solve method from Colpiv as there were multiple issues.
* rename qr() to householderQr(), for same reason.
* clarify that it's non-pivoting, non-rank-revealing, so remove all the rank API, make solve() be void instead of bool, update the docs/test, etc.
* fix warning in SVD
* switched lu/qr tests to be using createRandomMatrixOfRank
* removed unused methods doSomeRankPreservingOperations
* removed NOTE about doSomeRankPreservingOperations
The unsupported module documentation is automatically generated in:
build/doc/unsupported/
with bidirectional cross references.
I leave a class Foo in AdolcForward module to illustrate the
cross-reference behavior. I will remove it in the next commit.
Renamed "MatrixBase::extract() const" to "MatrixBase::part() const"
* Renamed static functions identity, zero, ones, random with an upper case
first letter: Identity, Zero, Ones and Random.
This is the first step towards a non-selfadjoint eigen solver.
Notes:
- We might consider merging Tridiagonalization and Hessenberg toghether ?
- Or we could factorize some code into a Householder class (could also be shared with QR)