Commit Graph

11112 Commits

Author SHA1 Message Date
Francesco Mazzoli
44df2109c8 Pick full packet unconditionally when EIGEN_UNALIGNED_VECTORIZE
See comment for details.
2020-02-07 18:16:16 +01:00
Francesco Mazzoli
5ca10480b0 avoid selecting half-packets when unnecessary
See
<https://stackoverflow.com/questions/59709148/ensuring-that-eigen-uses-avx-vectorization-for-a-certain-operation>
for an explanation of the problem this solves.

In short, for some reason, before this commit the half-packet is
selected when the array / matrix size is not a multiple of
`unpacket_traits<PacketType>::size`, where `PacketType` starts out
being the full Packet.

For example, for some data of 100 `float`s, `Packet4f` will be
selected rather than `Packet8f`, because 100 is not a multiple of 8,
the size of `Packet8f`.

This commit switches to selecting the half-packet if the size is
less than the packet size, which seems to make more sense.

As I stated in the SO post I'm not sure that I'm understanding the
issue correctly, but this fix resolves the issue in my program. Moreover,
`make check` passes, with the exception of line 614 and 616 in
`test/packetmath.cpp`, which however also fail on master on my machine:

    CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i0, internal::pbessel_i0);
    ...
    CHECK_CWISE1_IF(PacketTraits::HasBessel, numext::bessel_i1, internal::pbessel_i1);
2020-02-07 18:16:16 +01:00
Eugene Zhulenev
f584bd9b30 Fail at compile time if default executor tries to use non-default device 2020-02-06 22:43:24 +00:00
Eugene Zhulenev
3fda850c46 Remove dead code from TensorReduction.h 2020-01-29 18:45:31 +00:00
Jeff Daily
b5df8cabd7 fix hip-clang compilation due to new HIP scalar accessor 2020-01-20 21:08:52 +00:00
Deven Desai
6d284bb1b7 Fix for HIP breakage - 200115. Adding a missing EIGEN_DEVICE_FUNC attr 2020-01-16 00:51:43 +00:00
Srinivas Vasudevan
f6c6de5d63 Ensure Igamma does not NaN or Inf for large values. 2020-01-14 21:32:48 +00:00
Rasmus Munk Larsen
6601abce86 Remove rogue include in TypeCasting.h. Meta.h is already included by the top-level header in Eigen/Core. 2020-01-14 21:03:53 +00:00
Eugene Zhulenev
b9362fb8f7 Convert StridedLinearBufferCopy::Kind to enum class 2020-01-13 11:43:24 -08:00
Everton Constantino
5a8b97b401 Switching unpacket_traits<Packet4i> to vectorizable=true. 2020-01-13 16:08:20 -03:00
Everton Constantino
42838c28b8 Adding correct cache sizes for PPC architecture. 2020-01-13 16:58:14 +00:00
Christoph Hertzberg
1d0c45122a Removing executable bit from file mode 2020-01-11 15:02:29 +01:00
Christoph Hertzberg
35219cea68 Bug #1790: Make areApprox check numext::isnan instead of bitwise equality (NaNs don't have to be bitwise equal). 2020-01-11 14:57:22 +01:00
Srinivas Vasudevan
2e099e8d8f Added special_packetmath test and tweaked bounds on tests.
Refactor shared packetmath code to header file.
(Squashed from PR !38)
2020-01-11 10:31:21 +00:00
Rasmus Munk Larsen
e1ecfc162d call Explicitly ::rint and ::rintf for targets without c++11. Without this, the Windows build breaks when trying to compile numext::rint<double>. 2020-01-10 21:14:08 +00:00
Joel Holdsworth
da5a7afed0 Improvements to the tidiness and completeness of the NEON implementation 2020-01-10 18:31:15 +00:00
Anuj Rawat
452371cead Fix for gcc build error when using Eigen headers with AVX512 2020-01-10 18:05:42 +00:00
mehdi-goli
601f89dfd0 Adding RInt vector support for SYCL. 2020-01-10 18:00:36 +00:00
Matthew Powelson
2ea5a715cf Properly initialize b vector in SplineFitting
InterpolateWithDerivative does not initialize the be vector correctly. This issue is discussed In stackoverflow question 48382939.
2020-01-09 21:29:04 +00:00
Rasmus Munk Larsen
9254974115 Don't add EIGEN_DEVICE_FUNC to random() since ::rand is not available in Cuda. 2020-01-09 21:23:09 +00:00
Rasmus Munk Larsen
a3ec89b5bd Add missing EIGEN_DEVICE_FUNC annotations in MathFunctions.h. 2020-01-09 21:06:34 +00:00
Christoph Hertzberg
8333e03590 Use data.data() instead of &data (since it is not obvious that Array is trivially copyable) 2020-01-09 11:38:19 +01:00
Rasmus Munk Larsen
e6fcee995b Don't use the rational approximation to the logistic function on GPUs as it appears to be slightly slower. 2020-01-09 00:04:26 +00:00
Rasmus Munk Larsen
4217a9f090 The upper limits for where to use the rational approximation to the logistic function were not set carefully enough in the original commit, and some arguments would cause the function to return values greater than 1. This change set the versions found by scanning all floating point numbers (using std::nextafterf()). 2020-01-08 22:21:37 +00:00
Christoph Hertzberg
9623c0c4b9 Fix formatting 2020-01-08 13:58:18 +01:00
Ilya Tokar
19876ced76 Bug #1785: Introduce numext::rint.
This provides a new op that matches std::rint and previous behavior of
pround. Also adds corresponding unsupported/../Tensor op.
Performance is the same as e. g. floor (tested SSE/AVX).
2020-01-07 21:22:44 +00:00
mehdi-goli
d0ae052da4 [SYCL Backend]
* Adding Missing operations for vector comparison in SYCL. This caused compiler error for vector comparison when compiling SYCL
 * Fixing the compiler error for placement new in TensorForcedEval.h This caused compiler error when compiling SYCL backend
 * Reducing the SYCL warning by  removing the abort function inside the kernel
 * Adding Strong inline to functions inside SYCL interop.
2020-01-07 15:13:37 +00:00
Everton Constantino
eedb7eeacf Protecting integer_types's long long test with a check to see if we have CXX11 support. 2020-01-07 14:35:35 +00:00
Christoph Hertzberg
bcbaad6d87 Bug #1800: Guard against misleading indentation 2020-01-03 13:47:43 +01:00
Janek Kozicki
00de570793 Fix -Werror -Wfloat-conversion warning. 2019-12-23 23:52:44 +01:00
Deven Desai
636e2bb3fa Fix for HIP breakage - 191220
The breakage was introduced by the following commit :

ae07801dd8

After the commit, HIPCC errors out on some tests with the following error

```
Building HIPCC object unsupported/test/CMakeFiles/cxx11_tensor_device_1.dir/cxx11_tensor_device_1_generated_cxx11_tensor_device.cu.o
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_device.cu:17:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor💯
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h:129:12: error: no matching constructor for initialization of 'Eigen::internal::TensorBlockResourceRequirements'
    return {merge(lhs.shape_type, rhs.shape_type),           // shape_type
           ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h:75:8: note: candidate constructor (the implicit copy constructor) not viable: requires 1 argument, but 3 were provided
struct TensorBlockResourceRequirements {
       ^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h:75:8: note: candidate constructor (the implicit move constructor) not viable: requires 1 argument, but 3 were provided
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h:75:8: note: candidate constructor (the implicit copy constructor) not viable: requires 5 arguments, but 3 were provided
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h:75:8: note: candidate constructor (the implicit default constructor) not viable: requires 0 arguments, but 3 were provided
...
...
```

The fix is to explicitly decalre the (implicitly called) constructor as a device func
2019-12-20 21:28:00 +00:00
Christoph Hertzberg
1e9664b147 Bug #1796: Make matrix squareroot usable for Map and Ref types 2019-12-20 18:10:22 +01:00
Christoph Hertzberg
d86544d654 Reduce code duplication and avoid confusing Doxygen 2019-12-19 19:48:39 +01:00
Christoph Hertzberg
dde279f57d Hide recursive meta templates from Doxygen 2019-12-19 19:47:23 +01:00
Christoph Hertzberg
c21771ac04 Use double-braces initialization (as everywhere else in the test-suite). 2019-12-19 19:20:48 +01:00
Christoph Hertzberg
a3273aeff8 Fix trivial shadow warning 2019-12-19 19:13:11 +01:00
Christoph Hertzberg
870e53c0f2 Bug #1788: Fix rule-of-three violations inside the stable modules.
This fixes deprecated-copy warnings when compiling with GCC>=9
Also protect some additional Base-constructors from getting called by user code code (#1587)
2019-12-19 17:30:11 +01:00
Christoph Hertzberg
6965f6de7f Fix unit-test which I broke in previous fix 2019-12-19 13:42:14 +01:00
Eugene Zhulenev
7a65219a2e Fix TensorPadding bug in squeezed reads from inner dimension 2019-12-19 05:43:57 +00:00
Eugene Zhulenev
73e55525e5 Return const data pointer from TensorRef evaluator.data() 2019-12-18 23:19:36 +00:00
Eugene Zhulenev
ae07801dd8 Tensor block evaluation cost model 2019-12-18 20:07:00 +00:00
Christoph Hertzberg
72166d0e6e Fix some maybe-unitialized warnings 2019-12-18 18:26:20 +01:00
Christoph Hertzberg
5a3eaf88ac Workaround class-memaccess warnings on newer GCC versions 2019-12-18 16:37:26 +01:00
Jeff Daily
de07c4d1c2 fix compilation due to new HIP scalar accessor 2019-12-17 20:27:30 +00:00
Eugene Zhulenev
788bef6ab5 Reduce block evaluation overhead for small tensor expressions 2019-12-17 19:06:14 +00:00
Rasmus Munk Larsen
7252163335 Add default definition for EIGEN_PREDICT_* 2019-12-16 22:31:59 +00:00
Rasmus Munk Larsen
a566074480 Improve accuracy of fast approximate tanh and the logistic functions in Eigen, such that they preserve relative accuracy to within a few ULPs where their function values tend to zero (around x=0 for tanh, and for large negative x for the logistic function).
This change re-instates the fast rational approximation of the logistic function for float32 in Eigen (removed in 66f07efeae), but uses the more accurate approximation 1/(1+exp(-1)) ~= exp(x) below -9. The exponential is only calculated on the vectorized path if at least one element in the SIMD input vector is less than -9.

This change also contains a few improvements to speed up the original float specialization of logistic:
  - Introduce EIGEN_PREDICT_{FALSE,TRUE} for __builtin_predict and use it to predict that the logistic-only path is most likely (~2-3% speedup for the common case).
  - Carefully set the upper clipping point to the smallest x where the approximation evaluates to exactly 1. This saves the explicit clamping of the output (~7% speedup).

The increased accuracy for tanh comes at a cost of 10-20% depending on instruction set.

The benchmarks below repeated calls

   u = v.logistic()  (u = v.tanh(), respectively)

where u and v are of type Eigen::ArrayXf, have length 8k, and v contains random numbers in [-1,1].

Benchmark numbers for logistic:

Before:
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
SSE
BM_eigen_logistic_float        4467           4468         155835  model_time: 4827
AVX
BM_eigen_logistic_float        2347           2347         299135  model_time: 2926
AVX+FMA
BM_eigen_logistic_float        1467           1467         476143  model_time: 2926
AVX512
BM_eigen_logistic_float         805            805         858696  model_time: 1463

After:
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
SSE
BM_eigen_logistic_float        2589           2590         270264  model_time: 4827
AVX
BM_eigen_logistic_float        1428           1428         489265  model_time: 2926
AVX+FMA
BM_eigen_logistic_float        1059           1059         662255  model_time: 2926
AVX512
BM_eigen_logistic_float         673            673        1000000  model_time: 1463

Benchmark numbers for tanh:

Before:
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
SSE
BM_eigen_tanh_float        2391           2391         292624  model_time: 4242
AVX
BM_eigen_tanh_float        1256           1256         554662  model_time: 2633
AVX+FMA
BM_eigen_tanh_float         823            823         866267  model_time: 1609
AVX512
BM_eigen_tanh_float         443            443        1578999  model_time: 805

After:
Benchmark                  Time(ns)        CPU(ns)     Iterations
-----------------------------------------------------------------
SSE
BM_eigen_tanh_float        2588           2588         273531  model_time: 4242
AVX
BM_eigen_tanh_float        1536           1536         452321  model_time: 2633
AVX+FMA
BM_eigen_tanh_float        1007           1007         694681  model_time: 1609
AVX512
BM_eigen_tanh_float         471            471        1472178  model_time: 805
2019-12-16 21:33:42 +00:00
Christoph Hertzberg
8e5da71466 Resolve double-promotion warnings when compiling with clang.
`sin` was calling `sin(double)` instead of `std::sin(float)`
2019-12-13 22:46:40 +01:00
Christoph Hertzberg
9b7a2b43c2 Renamed .hgignore to .gitignore (removing hg-specific "syntax" line) 2019-12-13 19:40:57 +01:00
Ilya Tokar
06e99aaf40 Bug 1785: fix pround on x86 to use the same rounding mode as std::round.
This also adds pset1frombits helper to Packet[24]d.
Makes round ~45% slower for SSE: 1.65µs ± 1% before vs 2.45µs ± 2% after,
stil an order of magnitude faster than scalar version: 33.8µs ± 2%.
2019-12-12 17:38:53 -05:00