ei_aligned_malloc now really behaves like a malloc
(untyped, doesn't call ctor)
ei_aligned_new is the typed variant calling ctor
EIGEN_MAKE_ALIGNED_OPERATOR_NEW now takes the class name as parameter
(former solution still available and tested)
This plays much better with classes that already have base classes --
don't force the user to mess with multiple inheritance, which gave
much trouble with MSVC.
* Expand the unaligned assert dox page
* Minor fixes in the lazy evaluation dox page
* fixes for mistakes (especially in the cast() methods in Geometry) revealed by the new "mixing types" test
* dox love, including a section on coeff access in core and an overview in geometry
Derived to MatrixBase.
* the optimization of eval() for Matrix now consists in a partial
specialization of ei_eval, which returns a reference type for Matrix.
No overriding of eval() in Matrix anymore. Consequence: careful,
ei_eval is no longer guaranteed to give a plain matrix type!
For that, use ei_plain_matrix_type, or the PlainMatrixType typedef.
* so lots of changes to adapt to that everywhere. Hope this doesn't
break (too much) MSVC compilation.
* add code examples for the new image() stuff.
* lower a bit the precision for floats in the unit tests as
we were already doing some workarounds in inverse.cpp and we got some
failed tests.
* somehow the NICE_RANDOM stuff wasn't being used anymore and
tests were sometimes failing again. Fixed by #including Eigen/Array
instead of cherry-picking just Random.h.
* little fixes in the unaligned assert page
for this very nasty bug (unaligned member in dynamically allocated struct)
that our friends at Krita just encountered:
http://bugs.kde.org/show_bug.cgi?id=177133
CCBUG:177133
* remove the automatic resizing feature of operator =
* add function Matrix::set() to be used when the previous
behavior is wanted
* the default constructor of dynamic-size matrices now
creates a "null" matrix (data=0, rows = cols = 0)
instead of a 1x1 matrix
* fix UnixX typos ;)
It is only a first draft and I think it should be reorganized a bit in 2 parts:
1 - a compact table summarizing the main API and its use
(this is what would expect an "expert" user)
2 - a discussion about the various algorithm in Eigen to guide the newbies in linear algebra
Currently I mixed the discussion with the API, but it is still better than nothing !
* rename Cholesky to LLT
* rename CholeskyWithoutSquareRoot to LDLT
* rename MatrixBase::cholesky() to llt()
* rename MatrixBase::choleskyNoSqrt() to ldlt()
* make {LLT,LDLT}::solve() API consistent with other modules
Note that we are going to keep a source compatibility untill the next beta release.
E.g., the "old" Cholesky* classes, etc are still available for some time.
To be clear, Eigen beta2 should be (hopefully) source compatible with beta1,
and so beta2 will contain all the deprecated API of beta1. Those features marked
as deprecated will be removed in beta3 (or in the final 2.0 if there is no beta 3 !).
Also includes various updated in sparse Cholesky.
NonAffine, Affine (default), contains NoShear, contains NoScaling
that allows significant speed improvements. If you like it, this concept could be applied to
Transform::extractRotation (or to a more advanced decomposition function) and to Hyperplane::transformed()
and maybe to some other places... e.g., I think a Transform::normalMatrix() function would not harm and
warn user that the transformation of normals is not that trivial (I saw this mistake much too often)
* added a meta.cpp unit test
* EIGEN_TUNE_FOR_L2_CACHE_SIZE now represents L2 block size in Bytes (whence the ei_meta_sqrt...)
* added a CustomizeEigen.dox page
* added a TOC to QuickStartGuide.dox
* add some explanations in the typedefs page
* expand a bit the new QuickStartGuide. Some placeholders (not a pb since
it's not even yet linked to from other pages). The point I want to make is
that it's super important to have fully compilable short programs (even
with compile instructions for the first one) not just small snippets, at
least at the beginning. Let's start with examples of compilable programs.
- the decompostion code has been adfapted from JAMA
- handles non square matrices of size MxN with M>=N
- does not work for complex matrices
- includes a solver where the parts corresponding to zero singular values are set to zero
- 33 new snippets
- unfuck doxygen output in Cwise (issues with function macros)
- more see-also links from outside, making Cwise more discoverable
* rename matrixNorm() to operatorNorm(). There are many matrix norms
(the L2 is another one) but only one is called the operator norm.
Risk of confusion with keyword operator is not too scary after all.
* fix .normalized() so that Random().normalized() works; since the return
type became complicated to write down i just let it return an actual
vector, perhaps not optimal.
* add Sparse/CMakeLists.txt. I suppose that it was intentional that it
didn't have CMakeLists, but in <=2.0 releases I'll just manually remove
Sparse.
=> up to 6 times faster !
* Added DirectAccessBit to Part
* Added an exemple of a cwise operator
* Renamed perpendicular() => someOrthogonal() (geometry module)
* Fix a weired bug in ei_constant_functor: the default copy constructor did not copy
the imaginary part when the single member of the class is a complex...
Renamed "MatrixBase::extract() const" to "MatrixBase::part() const"
* Renamed static functions identity, zero, ones, random with an upper case
first letter: Identity, Zero, Ones and Random.
- remove all invertibility checking, will be redundant with LU
- general case: adapt to matrix storage order for better perf
- size 4 case: handle corner cases without falling back to gen case.
- rationalize with selectors instead of compile time if
- add C-style computeInverse()
* update inverse test.
* in snippets, default cout precision to 3 decimal places
* add some cmake module from kdelibs to support btl with cmake 2.4
* make the conj functor vectorizable: it is just identity in real case,
and complex doesn't use the vectorized path anyway.
* fix bug in Block: a 3x1 block in a 4x4 matrix (all fixed-size)
should not be vectorizable, since in fixed-size we are assuming
the size to be a multiple of packet size. (Or would you prefer
Vector3d to be flagged "packetaccess" even though no packet access
is possible on vectors of that type?)
* rename:
isOrtho for vectors ---> isOrthogonal
isOrtho for matrices ---> isUnitary
* add normalize()
* reimplement normalized with quotient1 functor
- get the doc of the flags in Constants right
- finally give up with SEPARATE_MEMBER_PAGES: it triggers too big
Doxygen bugs, and produces too many small pages. So we have one
huge page for MatrixBase at currently 300kb and going up, so the
solution especially for users with low bandwidth will be to provide
an archive of the html documentation.
finally that's more subtle than just using ei_nested, because when
flagging with NestByValueBit we want to store the expression by value
already, regardless of whether it already had the NestByValueBit set.
* rename temporary() ----> nestByValue()
* move the old Product.h to disabled/, replace by what was ProductWIP.h
* tweak -O and -g flags for tests and examples
* reorder the tests -- basic things go first
* simplifications, e.g. in many methoeds return derived() and count on
implicit casting to the actual return type.
* strip some not-really-useful stuff from the heaviest tests
* Use them to write an unrolled path in echelon.cpp, as an
experiment before I do this LU module.
* For floating-point types, make ei_random() use an amplitude
of 1.
when to evaluate arguments and when to meta-unroll.
-use it in Product to determine when to eval args. not yet used
to determine when to unroll. for now, not used anywhere else but
that'll follow.
-fix badness of my last commit
to preserve SVN history). They are made useless by the new
ei_eval_unless_lazy.
- introduce a generic Eval member typedef so one can do e.g.
T t; U u; Product<T, U>::Eval m; m = t*u;
the cacheOptimal is only good for large enough matrices.
When taking a block in a fixed-size (hence small) matrix,
the SizeAtCompileTime is Dynamic hence that's not a good
indicator. This example shows that the good indicator is
MaxSizeAtCompileTime.
Result: +10% speed in echelon.cpp
* macro renaming: EIGEN_NDEBUG becomes EIGEN_NO_DEBUG
as this is much better (and similar to Qt) and
EIGEN_CUSTOM_ASSERT becomes EIGEN_USE_CUSTOM_ASSERT
* protect Core header by a EIGEN_CORE_H
to disable eigen's asserts without disabling one's own program's
asserts. Notice that Eigen code should now use ei_assert()
instead of assert().
* Remove findBiggestCoeff() as it's now almost redundant.
* Improve echelon.cpp: inner for loop replaced by xprs.
* remove useless "(*this)." here and there. I think they were
first introduced by automatic search&replace.
* fix compilation in Visitor.h (issue triggered by echelon.cpp)
* improve comment on swap().
(the global funcs in MathFunctions.h and Fuzzy.h don't count as internal).
* Mainpage.dox. Add a few prospective Eigen users; change the recommended
-finline-limit from 10000 to 1000. The reason is: it could be harmful to have
a too big value here, couldn't it? (e.g. exceedingly large executables, cache
misses). Looking at gcc, a value of 900 would exactly mean "determine the inlining
of all functions as if they were marked with 'inline' keyword". So a value of
1000 seems a reasonable round number. In the benchmark that motivated this
(TestEigenSolvers) a value of 400 is enough on my system.
- add cwiseExp(), cwiseLog()...
--> for example, doing a gamma-correction on a bitmap image stored as
an array of floats is a simple matter of:
Eigen::Map<VectorXf> m = VectorXf::map(bitmap,size);
m = m.cwisePow(gamma);
- apidoc improvements, reorganization of the \name's
- remove obsolete examples
- remove EIGEN_ALWAYS_INLINE on lazyProduct(), it seems useless.
internal classes: AaBb -> ei_aa_bb
IntAtRunTimeIfDynamic -> ei_int_if_dynamic
unify UNROLLING_LIMIT (there was no reason to have operator= use
a higher limit)
etc...
template parameter "Scalar" is removed. This is achieved by introducting a
template <typename Derived> struct Scalar to achieve a forward-declaration of
the Scalar typedefs.
If the number of coefficients does not match the matrix size, then an assertion is raised.
No support for xpr on the right side for the moment.
* Added support for assertion checking. This allows to test that an assertion is indeed raised
when it should be.
* Fixed a mistake in the CwiseUnary example.
- compatible with current STL's functors as well as with the extention proposal (TR1)
* thanks to the above, Cast and ScalarMultiple have been removed
* benchmark_suite is more flexible (compiler and matrix size)
* functor templates are not template template parameter anymore
(this allows to make templated functors !)
* Main page: extented compiler discussion
* A small hack to support gcc 3.4 and 4.0 (see the main page)
* Fix a cast type issue in Cast
* Various doxygen updates (mainly Cwise stuff and added doxygen groups
in MatrixBase to split the huge memeber list, still not perfect though)
* Updated Gael's email address
- finally get the Eval stuff right. get back to having Eval as
a subclass of Matrix with limited functionality, and then,
add a typedef MatrixType to get the actual matrix type.
- add swap(), findBiggestCoeff()
- bugfix by Ramon in Transpose
- new demo: doc/echelon.cpp
- reduction of sizeof(Block) for vector types
- variants of block() and fixedBlock() for vector blocks
- convenience methods start() and end() for vectors
- convenience method corner() for matrices
dimension. The advantage is that evaluating a dynamic-sized block in a fixed-size
matrix no longer causes a dynamic memory allocation. Other new thing:
IntAtRunTimeIfDynamic allows storing an integer at zero cost if it is known at
compile time.
1) Eigen2 co-installable with Eigen1 without conflict, without affecting programs including either.
2) #include<Eigen/Core> without the .h without conflict with the Core/ directory
3) Uniformize coding style of the CMakeLists.
with minimal code duplication. There now are only two (2)
const_cast remaining in the whole source code.
- eigen2 now fully allows copying a row-vector into a column-vector.
added a unit-test for that.
- split unit tests, improve docs, various improvements.
- make vectors use a separate loop unroller, so that copying a
row-vector into a col-vector is now possible
- add much more documentation
- misc improvements
const_cast. But I think that anyway trying to maintain const strictness in Eigen2 is not
worth the hassle.
Konstantin: so the code snippet I sent you won't work anymore, replace wrapArray with fromArray.
CCMAIL:konst.heil@stud.uni-heidelberg.de
After huge thread on eigen mailing list, it appears that i'm the
only one in favor of prefix Ei. Everybody else prefers namespace
Eigen like we did in Eigen 1. So, revert.
Also add a macro USING_EIGEN_DATA_TYPES that application programmers
can use to automatically do "using"on the Matrix class and its
matrix/vector typedefs:
using Eigen::Matrix;
using Eigen::Matrix2d;
using Eigen::Vector2d;
... (the list of typedefs is really long).
thanks to the suffixes, the Vector typedefs aren't really polluting.
CCMAIL:eigen@lists.tuxfamily.org
P.S. Danny, please skip this one :) I know you already reported the
namespace->prefix move, now that one would be too much noise :)
Introduce a notion of RowVector (typedef for Matriw with 1 row)
Make row() return a row vector instead of a "column vector"
Introduce operator[] to access elements of row/column vectors uniformly
Remove default arguments in operator(), these were for vectors, now use operator[] instead
1) Kill MatrixXpr class, instead let all class inherit a common EigenBase class
2) Kill MatrixBase/Matrix/Vector classes, instead introduce a single Matrix class,
a MatrixStorage class, and typedefs to emulate vectors
3) Huge code cleanup, remove large preprocessor macros, sloccount drop to ~750
down from 1100.
4) Introduce compile-time-known sizes