PR 181 ( https://gitlab.com/libeigen/eigen/-/merge_requests/181 ) adds `__launch_bounds__(1024)` attribute to GPU kernels, that did not have that attribute explicitly specified.
That PR seems to cause regressions on the CUDA platform. This PR/commit makes the changes in PR 181, to be applicable for HIP only
- Introduce CMake option `EIGEN_SPLIT_TESTSUITE` that allows to divide the single test build target into several subtargets
- Add CI pipeline for merge request that can be run by GitLab's shared runners
- Add nightly CI pipeline
Some platforms define int64_t to be long long even for C++03. If this is
the case we miss the definition of internal::make_unsigned for this
type. If we just define the template we get duplicated definitions
errors for platforms defining int64_t as signed long for C++03.
We need to find a way to distinguish both cases at compile-time.
Starting with ROCm 3.5, the HIP compiler will change from HCC to hip-clang.
This compiler change introduce a change in the default value of the `__launch_bounds__` attribute associated with a GPU kernel. (default value means the value assumed by the compiler as the `__launch_bounds attribute__` value, when it is not explicitly specified by the user)
Currently (i.e. for HIP with ROCm 3.3 and older), the default value is 1024. That changes to 256 with ROCm 3.5 (i.e. hip-clang compiler). As a consequence of this change, if a GPU kernel with a `__luanch_bounds__` attribute of 256 is launched at runtime with a threads_per_block value > 256, it leads to a runtime error. This is leading to a couple of Eigen unit test failures with ROCm 3.5.
This commit adds an explicit `__launch_bounds(1024)__` attribute to every GPU kernel that currently does not have it explicitly specified (and hence will end up getting the default value of 256 with the change to hip-clang)
The NEON implementation mimics the SSE implementation, but didn't mention the caveat that due to the unsigned of signed integer conversions, not all values in the original floating point represented are supported.
If we have explicit conversion operators available (C++11) we define
explicit casts from bfloat16 to other types. If not (C++03), we don't
define conversion operators but rely on implicit conversion chains from
bfloat16 over float to other types.
Specialized `bfloat16_impl::float_to_bfloat16_rtne(float)` for normal floating point numbers, infinity and zero, in order to improve the performance of `bfloat16::bfloat16(const T&)` for integer argument types.
A reduction of more than 20% of the runtime duration of conversion from int to bfloat16 was observed, using Visual C++ 2019 on Windows 10.
Conversion from `bfloat16` to `float` and `double` is lossless. It seems natural to allow the conversion to be implicit, as the C++ language also support implicit conversion from a smaller to a larger floating point type.
Intel's OneDLL bfloat16 implementation also has an implicit `operator float()`: https://github.com/oneapi-src/oneDNN/blob/v1.5/src/common/bfloat16.hpp
- Guard fundamental types that are not available pre C++11
- Separate subsequent angle brackets >> by spaces
- Allow casting of Eigen::half and Eigen::bfloat16 to complex types
The original tensor casts were only defined for
`SrcCoeffRatio`:`TgtCoeffRatio` 1:1, 1:2, 2:1, 4:1. Here we add the
missing 1:N and 8:1.
We also add casting `Eigen::half` to/from `std::complex<T>`, which
was missing to make it consistent with `Eigen:bfloat16`, and
generalize the overload to work for any complex type.
Tests were added to `basicstuff`, `packetmath`, and
`cxx11_tensor_casts` to test all cast configurations.