PR 181 ( https://gitlab.com/libeigen/eigen/-/merge_requests/181 ) adds `__launch_bounds__(1024)` attribute to GPU kernels, that did not have that attribute explicitly specified.
That PR seems to cause regressions on the CUDA platform. This PR/commit makes the changes in PR 181, to be applicable for HIP only
Starting with ROCm 3.5, the HIP compiler will change from HCC to hip-clang.
This compiler change introduce a change in the default value of the `__launch_bounds__` attribute associated with a GPU kernel. (default value means the value assumed by the compiler as the `__launch_bounds attribute__` value, when it is not explicitly specified by the user)
Currently (i.e. for HIP with ROCm 3.3 and older), the default value is 1024. That changes to 256 with ROCm 3.5 (i.e. hip-clang compiler). As a consequence of this change, if a GPU kernel with a `__luanch_bounds__` attribute of 256 is launched at runtime with a threads_per_block value > 256, it leads to a runtime error. This is leading to a couple of Eigen unit test failures with ROCm 3.5.
This commit adds an explicit `__launch_bounds(1024)__` attribute to every GPU kernel that currently does not have it explicitly specified (and hence will end up getting the default value of 256 with the change to hip-clang)
The original tensor casts were only defined for
`SrcCoeffRatio`:`TgtCoeffRatio` 1:1, 1:2, 2:1, 4:1. Here we add the
missing 1:N and 8:1.
We also add casting `Eigen::half` to/from `std::complex<T>`, which
was missing to make it consistent with `Eigen:bfloat16`, and
generalize the overload to work for any complex type.
Tests were added to `basicstuff`, `packetmath`, and
`cxx11_tensor_casts` to test all cast configurations.
The use of the `packet_traits<>::HasCast` field is currently inconsistent with
`type_casting_traits<>`, and is unused apart from within
`test/packetmath.cpp`. In addition, those packetmath cast tests do not
currently reflect how casts are performed in practice: they ignore the
`SrcCoeffRatio` and `TgtCoeffRatio` fields, assuming a 1:1 ratio.
Here we remove the unsed `HasCast`, and modify the packet cast tests to
better reflect their usage.
- Use standard types in SYCL/PacketMath.h to avoid compilation problems on Windows
- Add EIGEN_HAS_CONSTEXPR to cxx11_tensor_argmax_sycl.cpp to fix build problems on Windows
This commit applies the following changes:
- Moving the `scamLauncher` specialization inside internal namespace to fix compiler crash on TensorScan for SYCL backend.
- Replacing `SYCL/sycl.hpp` to `CL/sycl.hpp` in order to follow SYCL 1.2.1 standard.
- minor fixes: commenting out an unused variable to avoid compiler warnings.
This provides a new op that matches std::rint and previous behavior of
pround. Also adds corresponding unsupported/../Tensor op.
Performance is the same as e. g. floor (tested SSE/AVX).
* Adding Missing operations for vector comparison in SYCL. This caused compiler error for vector comparison when compiling SYCL
* Fixing the compiler error for placement new in TensorForcedEval.h This caused compiler error when compiling SYCL backend
* Reducing the SYCL warning by removing the abort function inside the kernel
* Adding Strong inline to functions inside SYCL interop.
The breakage was introduced by the following commit :
ae07801dd8
After the commit, HIPCC errors out on some tests with the following error
```
Building HIPCC object unsupported/test/CMakeFiles/cxx11_tensor_device_1.dir/cxx11_tensor_device_1_generated_cxx11_tensor_device.cu.o
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_device.cu:17:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor💯
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h:129:12: error: no matching constructor for initialization of 'Eigen::internal::TensorBlockResourceRequirements'
return {merge(lhs.shape_type, rhs.shape_type), // shape_type
^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h:75:8: note: candidate constructor (the implicit copy constructor) not viable: requires 1 argument, but 3 were provided
struct TensorBlockResourceRequirements {
^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h:75:8: note: candidate constructor (the implicit move constructor) not viable: requires 1 argument, but 3 were provided
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h:75:8: note: candidate constructor (the implicit copy constructor) not viable: requires 5 arguments, but 3 were provided
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlock.h:75:8: note: candidate constructor (the implicit default constructor) not viable: requires 0 arguments, but 3 were provided
...
...
```
The fix is to explicitly decalre the (implicitly called) constructor as a device func
The following commit introduces compile errors when running eigen with hipcc
2918f85ba9
hipcc errors out because it requies the device attribute on the methods within the TensorBlockV2ResourceRequirements struct instroduced by the commit above. The fix is to add the device attribute to those methods
* Force-inline implementations. They pass around pointers to shared memory
blocks. Without inlining compiler must operate via generic pointers.
Inlining allows compiler to detect that we're operating on shared memory
which allows generation of substantially faster code.
* Fixed a long-standing typo which resulted in launching 8x more kernels
than we needed (.z dimension of the block is unused by the kernel).
* Unifying all loadLocalTile from lhs and rhs to an extract_block function.
* Adding get_tensor operation which was missing in TensorContractionMapper.
* Adding the -D method missing from cmake for Disable_Skinny Contraction operation.
* Wrapping all the indices in TensorScanSycl into Scan parameter struct.
* Fixing typo in Device SYCL
* Unifying load to private register for tall/skinny no shared
* Unifying load to vector tile for tensor-vector/vector-tensor operation
* Removing all the LHS/RHS class for extracting data from global
* Removing Outputfunction from TensorContractionSkinnyNoshared.
* Combining the local memory version of tall/skinny and normal tensor contraction into one kernel.
* Combining the no-local memory version of tall/skinny and normal tensor contraction into one kernel.
* Combining General Tensor-Vector and VectorTensor contraction into one kernel.
* Making double buffering optional for Tensor contraction when local memory is version is used.
* Modifying benchmark to accept custom Reduction Sizes
* Disabling AVX optimization for SYCL backend on the host to allow SSE optimization to the host
* Adding Test for SYCL
* Modifying SYCL CMake
Ancient versions of CMake required else(), endif(), and similar block
termination commands to have arguments matching the command starting the block.
This is no longer the preferred style.
Add a new EIGEN_HAS_INTRINSIC_INT128 macro, and use this instead of __SIZEOF_INT128__. This fixes related issues with TensorIntDiv.h when building with Clang for Windows, where support for 128-bit integer arithmetic is advertised but broken in practice.
* The specialization of array class in the different namespace for GCC<=6.4
* The implicit call to `std::array` constructor using the initializer list for GCC <=6.1
The errors were introduced by this commit :
After the above mentioned commit, some of the tests started failing with the following error
```
Built target cxx11_tensor_reduction
Building HIPCC object unsupported/test/CMakeFiles/cxx11_tensor_reduction_gpu_5.dir/cxx11_tensor_reduction_gpu_5_generated_cxx11_tensor_reduction_gpu.cu.o
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_reduction_gpu.cu:16:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor:117:
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlockV2.h:155:5: error: the field type is not amp-compatible
DestinationBufferKind m_kind;
^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/src/Tensor/TensorBlockV2.h:211:3: error: the field type is not amp-compatible
DestinationBuffer m_destination;
^
```
For some reason HIPCC does not like device code to contain enum types which do not have the base-type explicitly declared. The fix is trivial, explicitly state "int" as the basetype
The errors were introduced by this commit : d38e6fbc27
After the above mentioned commit, some of the tests started failing with the following error
```
Building HIPCC object unsupported/test/CMakeFiles/cxx11_tensor_reduction_gpu_5.dir/cxx11_tensor_reduction_gpu_5_generated_cxx11_tensor_reduction_gpu.cu.o
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_reduction_gpu.cu:16:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor:29:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/../SpecialFunctions:70:
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsHalf.h:28:22: error: call to 'erf' is ambiguous
return Eigen::half(Eigen::numext::erf(static_cast<float>(a)));
^~~~~~~~~~~~~~~~~~
/home/rocm-user/eigen/unsupported/test/../../Eigen/src/Core/MathFunctions.h:1600:7: note: candidate function [with T = float]
float erf(const float &x) { return ::erff(x); }
^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsImpl.h:1897:5: note: candidate function [with Scalar = float]
erf(const Scalar& x) {
^
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_reduction_gpu.cu:16:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor:29:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/../SpecialFunctions:75:
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/arch/GPU/GpuSpecialFunctions.h:87:23: error: call to 'erf' is ambiguous
return make_double2(erf(a.x), erf(a.y));
^~~
/home/rocm-user/eigen/unsupported/test/../../Eigen/src/Core/MathFunctions.h:1603:8: note: candidate function [with T = double]
double erf(const double &x) { return ::erf(x); }
^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsImpl.h:1897:5: note: candidate function [with Scalar = double]
erf(const Scalar& x) {
^
In file included from /home/rocm-user/eigen/unsupported/test/cxx11_tensor_reduction_gpu.cu:16:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/Tensor:29:
In file included from /home/rocm-user/eigen/unsupported/Eigen/CXX11/../SpecialFunctions:75:
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/arch/GPU/GpuSpecialFunctions.h:87:33: error: call to 'erf' is ambiguous
return make_double2(erf(a.x), erf(a.y));
^~~
/home/rocm-user/eigen/unsupported/test/../../Eigen/src/Core/MathFunctions.h:1603:8: note: candidate function [with T = double]
double erf(const double &x) { return ::erf(x); }
^
/home/rocm-user/eigen/unsupported/Eigen/CXX11/../src/SpecialFunctions/SpecialFunctionsImpl.h:1897:5: note: candidate function [with Scalar = double]
erf(const Scalar& x) {
^
3 errors generated.
```
This PR fixes the compile error by removing the "old" implementation for "erf" (assuming that the "new" implementation is what we want going forward. from a GPU point-of-view both implementations are the same).
This PR also fixes what seems like a cut-n-paste error in the aforementioned commit
- Split SpecialFunctions files in to a separate BesselFunctions file.
In particular add:
- Modified bessel functions of the second kind k0, k1, k0e, k1e
- Bessel functions of the first kind j0, j1
- Bessel functions of the second kind y0, y1
The fixes needed are
* adding EIGEN_DEVICE_FUNC attribute to a couple of funcs (else HIPCC will error out when non-device funcs are called from global/device funcs)
* switching to using ::<math_func> instead std::<math_func> (only for HIPCC) in cases where the std::<math_func> is not recognized as a device func by HIPCC
* removing an errant "j" from a testcase (don't know how that made it in to begin with!)
The change caused the device struct to be copied for each expression evaluation, and caused, e.g., a 10% regression in the TensorFlow multinomial op on GPU:
Benchmark Time(ns) CPU(ns) Iterations
----------------------------------------------------------------------
BM_Multinomial_gpu_1_100000_4 128173 231326 2922 1.610G items/s
VS
Benchmark Time(ns) CPU(ns) Iterations
----------------------------------------------------------------------
BM_Multinomial_gpu_1_100000_4 146683 246914 2719 1.509G items/s