* renaming, e.g. LU ---> FullPivLU
* split tests framework: more robust, e.g. dont generate empty tests if a number is skipped
* make all remaining tests use that splitting, as needed.
* Fix 4x4 inversion (see stable branch)
* Transform::inverse() and geo_transform test : adapt to new inverse() API, it was also trying to instantiate inverse() for 3x4 matrices.
* CMakeLists: more robust regexp to parse the version number
* misc fixes in unit tests
- 33 new snippets
- unfuck doxygen output in Cwise (issues with function macros)
- more see-also links from outside, making Cwise more discoverable
* rename matrixNorm() to operatorNorm(). There are many matrix norms
(the L2 is another one) but only one is called the operator norm.
Risk of confusion with keyword operator is not too scary after all.
This is the first step towards a non-selfadjoint eigen solver.
Notes:
- We might consider merging Tridiagonalization and Hessenberg toghether ?
- Or we could factorize some code into a Householder class (could also be shared with QR)
* added MatrixBase::real()
* added the ability to extract a selfadjoint matrix from the
lower or upper part of a matrix, e.g.:
m.extract<Upper|SelfAdjoint>()
will ignore the strict lower part and return a selfadjoint.
This is compatible with ZeroDiag and UnitDiag.
(does not support complex and does not re-use the QR decomposition)
* Rewrite the cache friendly product to have only one instance per scalar type !
This significantly speeds up compilation time and reduces executable size.
The current drawback is that some trivial expressions might be
evaluated like conjugate or negate.
* Renamed "cache optimal" to "cache friendly"
* Added the ability to directly access matrix data of some expressions via:
- the stride()/_stride() methods
- DirectAccessBit flag (replace ReferencableBit)
part of a matrix. Triangular also provide an optimised method for forward
and backward substitution. Further optimizations regarding assignments and
products might come later.
Updated determinant() to take into account triangular matrices.
Started the QR module with a QR decompostion algorithm.
Help needed to build a QR algorithm (eigen solver) based on it.