- add MatrixBase::matrixNorm(); in the non-selfadjoint case, we reduce to the
selfadjoint case by using the "C*-identity" a.k.a.
norm of x = sqrt(norm of x * x.adjoint())
* added MatrixBase::real()
* added the ability to extract a selfadjoint matrix from the
lower or upper part of a matrix, e.g.:
m.extract<Upper|SelfAdjoint>()
will ignore the strict lower part and return a selfadjoint.
This is compatible with ZeroDiag and UnitDiag.
* added ConjugateReturnType and AdjointReturnType that are type-defined to Derived&
and Transpose<Derived> if the scalar type is not complex: this avoids abusive copies in
the cache friendly Product
was a sign that we were doing something wrong. In fact, having
NestByValue as a special case of Flagged was wrong, and the previous
commit, while not buggy, was inefficient because then when the resulting
NestByValue xpr was nested -- hence copied -- the original xpr which was
already nested by value was copied again; hence instead of 1 copy we got
3 copies.
The solution was to ressuscitate the old Temporary.h (renamed
NestByValue.h) as it was the right approach.
finally that's more subtle than just using ei_nested, because when
flagging with NestByValueBit we want to store the expression by value
already, regardless of whether it already had the NestByValueBit set.
* rename temporary() ----> nestByValue()
* move the old Product.h to disabled/, replace by what was ProductWIP.h
* tweak -O and -g flags for tests and examples
* reorder the tests -- basic things go first
* simplifications, e.g. in many methoeds return derived() and count on
implicit casting to the actual return type.
* strip some not-really-useful stuff from the heaviest tests
Triangular class
- full meta-unrolling in Part
- move inverseProduct() to MatrixBase
- compilation fix in ProductWIP: introduce a meta-selector to only do
direct access on types that support it.
- phase out the old Product, remove the WIP_DIRTY stuff.
- misc renaming and fixes
- fallback to normal product for small dynamic matrices
- overloaded "c += (a * b).lazy()" to avoid the expensive and useless temporary and setZero()
in such very common cases.
* fix a couple of issues with the flags
(does not support complex and does not re-use the QR decomposition)
* Rewrite the cache friendly product to have only one instance per scalar type !
This significantly speeds up compilation time and reduces executable size.
The current drawback is that some trivial expressions might be
evaluated like conjugate or negate.
* Renamed "cache optimal" to "cache friendly"
* Added the ability to directly access matrix data of some expressions via:
- the stride()/_stride() methods
- DirectAccessBit flag (replace ReferencableBit)
* Fix compilation of Inverse.h with vectorisation
* Introduce EIGEN_GNUC_AT_LEAST(x,y) macro doing future-proof (e.g. gcc v5.0) check
* Only use ProductWIP if vectorisation is enabled
* rename EIGEN_ALWAYS_INLINE -> EIGEN_INLINE with fall-back to inline keyword
* some cleanup/indentation
(needed by the new product implementation)
* Make the packet* members template to support aligned and unaligned
access. This makes Block vectorizable. Combined with ReferencableBit,
we should be able to determine at runtime (in some specific cases) if
an aligned vectorization is possible or not.
* Improved the new product implementation to robustly handle all cases,
it now passes all the tests.
* Renamed the packet version ei_predux to ei_preduxp to avoid name collision.
* Introduce a new highly optimized matrix-matrix product for large
matrices. The code is still highly experimental and it is activated
only if you define EIGEN_WIP_PRODUCT at compile time.
Currently the third dimension of the product must be a factor of
the packet size (x4 for floats) and the right handed side matrix
must be column major.
Moreover, currently c = a*b; actually computes c += a*b !!
Therefore, the code is provided for experimentation purpose only !
These limitations will be fixed soon or later to become the default
product implementation.