- no FMA: 1ULP up to 3pi, 2ULP up to sin(25966) and cos(18838), fallback to std::sin/cos for larger inputs
- FMA: 1ULP up to sin(117435.992) and cos(71476.0625), fallback to std::sin/cos for larger inputs
Commit c53eececb0
introduced AVX512 support for complex numbers but required
avx512dq to build. Commit 1d683ae2f5
fixed some but not, it would seem all,
of the hard avx512dq dependencies. Build failures are still evident on
Eigen and TensorFlow when compiling with just avx512f and no avx512dq
using gcc 7.3. Looking at the code there does indeed seem to be a problem.
Commit c53eececb0
calls avx512dq intrinsics directly, e.g, _mm512_extractf32x8_ps
and _mm512_and_ps. This commit fixes the issue by replacing the direct
intrinsic calls with the various wrapper functions that are safe to use on
avx512f only builds.
MIME-Version: 1.0
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
The patch works by altering the gebp lhs packing routines to also
consider ½ and ¼ packet lenght rows when packing, besides the original
whole package and row-by-row attempts. Finally, gebp itself will try
to fit a fraction of a packet at a time if:
i) ½ and/or ¼ packets are available for the current context (e.g. AVX2
and SSE-sized SIMD register for x86)
ii) The matrix's height is favorable to it (it may be it's too small
in that dimension to take full advantage of the current/maximum
packet width or it may be the case that last rows may take
advantage of smaller packets before gebp goes row-by-row)
This helps mitigate huge slowdowns one had on AVX512 builds when
compared to AVX2 ones, for some dimensions. Gains top at an extra 1x
in throughput. This patch is a complement to changeset 4ad359237a
.
Since packing is changed, Eigen users which would go for very
low-level API usage, like TensorFlow, will have to be adapted to work
fine with the changes.
This is a preparation to a change on gebp_traits, where a new template
argument will be introduced to dictate the packet size, so it won't be
bound to the current/max packet size only anymore.
By having packet types defined early on gebp_traits, one has now to
act on packet types, not scalars anymore, for the enum values defined
on that class. One approach for reaching the vectorizable/size
properties one needs there could be getting the packet's scalar again
with unpacket_traits<>, then the size/Vectorizable enum entries from
packet_traits<>. It turns out guards like "#ifndef
EIGEN_VECTORIZE_AVX512" at AVX/PacketMath.h will hide smaller packet
variations of packet_traits<> for some types (and it makes sense to
keep that). In other words, one can't go back to the scalar and create
a new PacketType, as this will always lead to the maximum packet type
for the architecture.
The less costly/invasive solution for that, thus, is to add the
vectorizable info on every unpacket_traits struct as well.
It is based on the SSE version which is much more accurate, though very slightly slower.
This changeset also includes the following required changes:
- add packet-float to packet-int type traits
- add packet float<->int reinterpret casts
- add faster pselect for AVX based on blendv
Commit aa110e681b
optimised the multiplication of small dyanmically
sized matrices by restricting the packet size to a maximum of 4, increasing
the chances that SIMD instructions are used in the computation. However, it
introduced a mismatch between the packet size and the requestedAlignment. This
mismatch can lead to crashes when the destination is not aligned. This patch
fixes the issue by ensuring that the AssignmentTraits are correctly computed
when using a restricted packet size.
* * *
Bind LinearPacketType to MaxPacketSize
This commit applies any packet size limit specified when instantiating
copy_using_evaluator_traits to the LinearPacketType, providing that the
size of the destination is not known at compile time.
* * *
Add unit test for restricted packet assignment
A new unit test is added to check that multiplication of small dynamically
sized matrices works correctly when the packet size is restricted to 4 and
the destination is unaligned.
* Support compiling without IO streams
Add the preprocessor definition EIGEN_NO_IO which, if defined,
disables all use of the IO streams part of the standard library.
INFO: From Compiling tensorflow/core/kernels/maxpooling_op_gpu.cu.cc:
/b/f/w/run/external/eigen_archive/Eigen/src/Core/arch/GPU/Half.h(197): error: calling a __host__ function("std::equal_to<float> ::operator () const") from a __global__ function("tensorflow::_NV_ANON_NAMESPACE::MaxPoolGradBackwardNoMaskNHWC< ::Eigen::half> ") is not allowed
/b/f/w/run/external/eigen_archive/Eigen/src/Core/arch/GPU/Half.h(197): error: identifier "std::equal_to<float> ::operator () const" is undefined in device code"
/b/f/w/run/external/eigen_archive/Eigen/src/Core/arch/GPU/Half.h(197): error: calling a __host__ function("std::equal_to<float> ::operator () const") from a __global__ function("tensorflow::_NV_ANON_NAMESPACE::MaxPoolGradBackwardNoMaskNCHW< ::Eigen::half> ") is not allowed
/b/f/w/run/external/eigen_archive/Eigen/src/Core/arch/GPU/Half.h(197): error: identifier "std::equal_to<float> ::operator () const" is undefined in device code
4 errors detected in the compilation of "/tmp/tmpxft_00000011_00000000-6_maxpooling_op_gpu.cu.cpp1.ii".
ERROR: /tmpfs/tensor_flow/tensorflow/core/kernels/BUILD:3753:1: output 'tensorflow/core/kernels/_objs/pooling_ops_gpu/maxpooling_op_gpu.cu.pic.o' was not created
ERROR: /tmpfs/tensor_flow/tensorflow/core/kernels/BUILD:3753:1: Couldn't build file tensorflow/core/kernels/_objs/pooling_ops_gpu/maxpooling_op_gpu.cu.pic.o: not all outputs were created or valid
The Packet16f, Packet8f and Packet8d types are too large to use with dynamically
sized matrices typically processed by the SliceVectorizedTraversal specialization of
the dense_assignment_loop. Using these types is likely to lead to little or no
vectorization. Significant slowdown in the multiplication of these small matrices can
be observed when building with AVX and AVX512 enabled.
This patch introduces a new dense_assignment_kernel that is used when
computing small products whose operands have dynamic dimensions. It ensures that the
PacketSize used is no larger than 4, thereby increasing the chance that vectorized
instructions will be used when computing the product.
I tested all 969 possible combinations of M, K, and N that are handled by the
dense_assignment_loop on x86 builds. Although a few combinations are slowed down
by this patch they are far outnumbered by the cases that are sped up, as the
following results demonstrate.
Disabling Packed8d on AVX512 builds:
Total Cases: 969
Better: 511
Worse: 85
Same: 373
Max Improvement: 169.00% (4 8 6)
Max Degradation: 36.50% (8 5 3)
Median Improvement: 35.46%
Median Degradation: 17.41%
Total FLOPs Improvement: 19.42%
Disabling Packet16f and Packed8f on AVX512 builds:
Total Cases: 969
Better: 658
Worse: 5
Same: 306
Max Improvement: 214.05% (8 6 5)
Max Degradation: 22.26% (16 2 1)
Median Improvement: 60.05%
Median Degradation: 13.32%
Total FLOPs Improvement: 59.58%
Disabling Packed8f on AVX builds:
Total Cases: 969
Better: 663
Worse: 96
Same: 210
Max Improvement: 155.29% (4 10 5)
Max Degradation: 35.12% (8 3 2)
Median Improvement: 34.28%
Median Degradation: 15.05%
Total FLOPs Improvement: 26.02%
- unsupported/Eigen/CXX11/src/Tensor/TensorReductionGpu.h
Changing "pass-by-reference" argument to be "pass-by-value" instead
(in a __global__ function decl).
"pass-by-reference" arguments to __global__ functions are unwise,
and will be explicitly flagged as errors by the newer versions of HIP.
- Eigen/src/Core/util/Memory.h
- unsupported/Eigen/CXX11/src/Tensor/TensorContraction.h
Changes introduced in recent commits breaks the HIP compile.
Adding EIGEN_DEVICE_FUNC attribute to some functions and
calling ::malloc/free instead of the corresponding std:: versions
to get the HIP compile working again
- unsupported/Eigen/CXX11/src/Tensor/TensorReduction.h
Change introduced a recent commit breaks the HIP compile
(link stage errors out due to failure to inline a function).
Disabling the recently introduced code (only for HIP compile), to get
the eigen nightly testing going again.
Will submit another PR once we have te proper fix.
- Eigen/src/Core/util/ConfigureVectorization.h
Enabling GPU VECTOR support when HIP compiler is in use
(for both the host and device compile phases)