Eugene Zhulenev
f35b9ab510
Fix a bug in a packed block type in TensorContractionThreadPool
2019-09-24 16:54:36 -07:00
Rasmus Larsen
d38e6fbc27
Merged in rmlarsen/eigen (pull request PR-704)
...
Add generic PacketMath implementation of the Error Function (erf).
2019-09-24 23:40:29 +00:00
Rasmus Munk Larsen
591a554c68
Add TODO to cleanup FMA cost modelling.
2019-09-24 16:39:25 -07:00
Eugene Zhulenev
c64396b4c6
Choose TensorBlock StridedLinearCopy type statically
2019-09-24 16:04:29 -07:00
Eugene Zhulenev
c97b208468
Add new TensorBlock api implementation + tests
2019-09-24 15:17:35 -07:00
Eugene Zhulenev
ef9dfee7bd
Tensor block evaluation V2 support for unary/binary/broadcsting
2019-09-24 12:52:45 -07:00
Christoph Hertzberg
efd9867ff0
bug #1746 : Removed implementation of standard copy-constructor and standard copy-assign-operator from PermutationMatrix and Transpositions to allow malloc-less std::move. Added unit-test to rvalue_types
2019-09-24 11:09:58 +02:00
Christoph Hertzberg
e4c1b3c1d2
Fix implicit conversion warnings and use pnegate to negate packets
2019-09-23 16:07:43 +02:00
Christoph Hertzberg
ba0736fa8e
Fix (or mask away) conversion warnings introduced in 553caeb6a3
...
.
2019-09-23 15:58:05 +02:00
Rasmus Munk Larsen
1d5af0693c
Add support for asynchronous evaluation of tensor casting expressions.
2019-09-19 13:54:49 -07:00
Rasmus Munk Larsen
6de5ed08d8
Add generic PacketMath implementation of the Error Function (erf).
2019-09-19 12:48:30 -07:00
Rasmus Munk Larsen
28b6786498
Fix build on setups without AVX512DQ.
2019-09-19 12:36:09 -07:00
Deven Desai
e02d429637
Fix for the HIP build+test errors.
...
The errors were introduced by this commit : 6e215cf109
The fix is switching to using ::<math_func> instead std::<math_func> when compiling for GPU
2019-09-18 18:44:20 +00:00
Srinivas Vasudevan
df0816b71f
Merging eigen/eigen.
2019-09-16 19:33:29 -04:00
Srinivas Vasudevan
6e215cf109
Add Bessel functions to SpecialFunctions.
...
- Split SpecialFunctions files in to a separate BesselFunctions file.
In particular add:
- Modified bessel functions of the second kind k0, k1, k0e, k1e
- Bessel functions of the first kind j0, j1
- Bessel functions of the second kind y0, y1
2019-09-14 12:16:47 -04:00
Eugene Zhulenev
7c73296849
Revert accidental change to GCC diagnostics
2019-09-13 14:30:58 -07:00
Eugene Zhulenev
bf8866b466
Fix maybe-unitialized warnings in TensorContractionThreadPool
2019-09-13 14:29:55 -07:00
Eugene Zhulenev
553caeb6a3
Use ThreadLocal container in TensorContractionThreadPool
2019-09-13 12:14:44 -07:00
Srinivas Vasudevan
facdec5aa7
Add packetized versions of i0e and i1e special functions.
...
- In particular refactor the i0e and i1e code so scalar and vectorized path share code.
- Move chebevl to GenericPacketMathFunctions.
A brief benchmark with building Eigen with FMA, AVX and AVX2 flags
Before:
CPU: Intel Haswell with HyperThreading (6 cores)
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
BM_eigen_i0e_double/1 57.3 57.3 10000000
BM_eigen_i0e_double/8 398 398 1748554
BM_eigen_i0e_double/64 3184 3184 218961
BM_eigen_i0e_double/512 25579 25579 27330
BM_eigen_i0e_double/4k 205043 205042 3418
BM_eigen_i0e_double/32k 1646038 1646176 422
BM_eigen_i0e_double/256k 13180959 13182613 53
BM_eigen_i0e_double/1M 52684617 52706132 10
BM_eigen_i0e_float/1 28.4 28.4 24636711
BM_eigen_i0e_float/8 75.7 75.7 9207634
BM_eigen_i0e_float/64 512 512 1000000
BM_eigen_i0e_float/512 4194 4194 166359
BM_eigen_i0e_float/4k 32756 32761 21373
BM_eigen_i0e_float/32k 261133 261153 2678
BM_eigen_i0e_float/256k 2087938 2088231 333
BM_eigen_i0e_float/1M 8380409 8381234 84
BM_eigen_i1e_double/1 56.3 56.3 10000000
BM_eigen_i1e_double/8 397 397 1772376
BM_eigen_i1e_double/64 3114 3115 223881
BM_eigen_i1e_double/512 25358 25361 27761
BM_eigen_i1e_double/4k 203543 203593 3462
BM_eigen_i1e_double/32k 1613649 1613803 428
BM_eigen_i1e_double/256k 12910625 12910374 54
BM_eigen_i1e_double/1M 51723824 51723991 10
BM_eigen_i1e_float/1 28.3 28.3 24683049
BM_eigen_i1e_float/8 74.8 74.9 9366216
BM_eigen_i1e_float/64 505 505 1000000
BM_eigen_i1e_float/512 4068 4068 171690
BM_eigen_i1e_float/4k 31803 31806 21948
BM_eigen_i1e_float/32k 253637 253692 2763
BM_eigen_i1e_float/256k 2019711 2019918 346
BM_eigen_i1e_float/1M 8238681 8238713 86
After:
CPU: Intel Haswell with HyperThreading (6 cores)
Benchmark Time(ns) CPU(ns) Iterations
-----------------------------------------------------------------
BM_eigen_i0e_double/1 15.8 15.8 44097476
BM_eigen_i0e_double/8 99.3 99.3 7014884
BM_eigen_i0e_double/64 777 777 886612
BM_eigen_i0e_double/512 6180 6181 100000
BM_eigen_i0e_double/4k 48136 48140 14678
BM_eigen_i0e_double/32k 385936 385943 1801
BM_eigen_i0e_double/256k 3293324 3293551 228
BM_eigen_i0e_double/1M 12423600 12424458 57
BM_eigen_i0e_float/1 16.3 16.3 43038042
BM_eigen_i0e_float/8 30.1 30.1 23456931
BM_eigen_i0e_float/64 169 169 4132875
BM_eigen_i0e_float/512 1338 1339 516860
BM_eigen_i0e_float/4k 10191 10191 68513
BM_eigen_i0e_float/32k 81338 81337 8531
BM_eigen_i0e_float/256k 651807 651984 1000
BM_eigen_i0e_float/1M 2633821 2634187 268
BM_eigen_i1e_double/1 16.2 16.2 42352499
BM_eigen_i1e_double/8 110 110 6316524
BM_eigen_i1e_double/64 822 822 851065
BM_eigen_i1e_double/512 6480 6481 100000
BM_eigen_i1e_double/4k 51843 51843 10000
BM_eigen_i1e_double/32k 414854 414852 1680
BM_eigen_i1e_double/256k 3320001 3320568 212
BM_eigen_i1e_double/1M 13442795 13442391 53
BM_eigen_i1e_float/1 17.6 17.6 41025735
BM_eigen_i1e_float/8 35.5 35.5 19597891
BM_eigen_i1e_float/64 240 240 2924237
BM_eigen_i1e_float/512 1424 1424 485953
BM_eigen_i1e_float/4k 10722 10723 65162
BM_eigen_i1e_float/32k 86286 86297 8048
BM_eigen_i1e_float/256k 691821 691868 1000
BM_eigen_i1e_float/1M 2777336 2777747 256
This shows anywhere from a 50% to 75% improvement on these operations.
I've also benchmarked without any of these flags turned on, and got similar
performance to before (if not better).
Also tested packetmath.cpp + special_functions to ensure no regressions.
2019-09-11 18:34:02 -07:00
Srinivas Vasudevan
b052ec6992
Merged eigen/eigen into default
2019-09-11 18:01:54 -07:00
Deven Desai
cdb377d0cb
Fix for the HIP build+test errors introduced by the ndtri support.
...
The fixes needed are
* adding EIGEN_DEVICE_FUNC attribute to a couple of funcs (else HIPCC will error out when non-device funcs are called from global/device funcs)
* switching to using ::<math_func> instead std::<math_func> (only for HIPCC) in cases where the std::<math_func> is not recognized as a device func by HIPCC
* removing an errant "j" from a testcase (don't know how that made it in to begin with!)
2019-09-06 16:03:49 +00:00
Gael Guennebaud
747c6a51ca
bug #1736 : fix compilation issue with A(all,{1,2}).col(j) by implementing true compile-time "if" for block_evaluator<>::coeff(i)/coeffRef(i)
2019-09-11 15:40:07 +02:00
Gael Guennebaud
031f17117d
bug #1741 : fix self-adjoint*matrix, triangular*matrix, and triangular^1*matrix with a destination having a non-trivial inner-stride
2019-09-11 15:04:25 +02:00
Gael Guennebaud
459b2bcc08
Fix compilation of BLAS backend and frontend
2019-09-11 10:02:37 +02:00
Rasmus Larsen
97f1e1d89f
Merged in ezhulenev/eigen-01 (pull request PR-698)
...
ThreadLocal container that does not rely on thread local storage
Approved-by: Rasmus Larsen <rmlarsen@google.com>
2019-09-10 23:19:33 +00:00
Eugene Zhulenev
d918bd9a8b
Update ThreadLocal to use separate Initialize/Release callables
2019-09-10 16:13:32 -07:00
Gael Guennebaud
afa8d13532
Fix some implicit literal to Scalar conversions in SparseCore
2019-09-11 00:03:07 +02:00
Gael Guennebaud
c06e6fd115
bug #1741 : fix SelfAdjointView::rankUpdate and product to triangular part for destination with non-trivial inner stride
2019-09-10 23:29:52 +02:00
Gael Guennebaud
ea0d5dc956
bug #1741 : fix C.noalias() = A*C; with C.innerStride()!=1
2019-09-10 16:25:24 +02:00
Eugene Zhulenev
e3dec4dcc1
ThreadLocal container that does not rely on thread local storage
2019-09-09 15:18:14 -07:00
Gael Guennebaud
17226100c5
Fix a circular dependency regarding pshift* functions and GenericPacketMathFunctions.
...
Another solution would have been to make pshift* fully generic template functions with
partial specialization which is always a mess in c++03.
2019-09-06 09:26:04 +02:00
Gael Guennebaud
55b63d4ea3
Fix compilation without vector engine available (e.g., x86 with SSE disabled):
...
-> ppolevl is required by ndtri even for the scalar path
2019-09-05 18:16:46 +02:00
Srinivas Vasudevan
a9cf823db7
Merged eigen/eigen
2019-09-04 23:50:52 -04:00
Gael Guennebaud
e6c183f8fd
Fix doc issues regarding ndtri
2019-09-04 23:00:21 +02:00
Gael Guennebaud
5702a57926
Fix possible warning regarding strict equality comparisons
2019-09-04 22:57:04 +02:00
Srinivas Vasudevan
99036a3615
Merging from eigen/eigen.
2019-09-03 15:34:47 -04:00
Eugene Zhulenev
a8d264fa9c
Add test for const TensorMap underlying data mutation
2019-09-03 11:38:39 -07:00
Eugene Zhulenev
f68f2bba09
TensorMap constness should not change underlying storage constness
2019-09-03 11:08:09 -07:00
Gael Guennebaud
8e7e3d9bc8
Makes Scalar/RealScalar typedefs public in Pardiso's wrappers (see PR 688)
2019-09-03 13:09:03 +02:00
Srinivas Vasudevan
e38dd48a27
PR 681: Add ndtri function, the inverse of the normal distribution function.
2019-08-12 19:26:29 -04:00
Eugene Zhulenev
f59bed7a13
Change typedefs from private to protected to fix MSVC compilation
2019-09-03 19:11:36 -07:00
Eugene Zhulenev
47fefa235f
Allow move-only done callback in TensorAsyncDevice
2019-09-03 17:20:56 -07:00
Srinivas Vasudevan
18ceb3413d
Add ndtri function, the inverse of the normal distribution function.
2019-08-12 19:26:29 -04:00
Rasmus Munk Larsen
d55d392e7b
Fix bugs in log1p and expm1 where repeated using statements would clobber each other.
...
Add specializations for complex types since std::log1p and std::exp1m do not support complex.
2019-08-08 16:27:32 -07:00
Rasmus Munk Larsen
85928e5f47
Guard against repeated definition of EIGEN_MPL2_ONLY
2019-08-07 14:19:00 -07:00
Rasmus Munk Larsen
facc4e4536
Disable tests for contraction with output kernels when using libxsmm, which does not support this.
2019-08-07 14:11:15 -07:00
Rasmus Munk Larsen
eab7e52db2
[Eigen] Vectorize evaluation of coefficient-wise functions over tensor blocks if the strides are known to be 1. Provides up to 20-25% speedup of the TF cross entropy op with AVX.
...
A few benchmark numbers:
name old time/op new time/op delta
BM_Xent_16_10000_cpu 448µs ± 3% 389µs ± 2% -13.21%
(p=0.008 n=5+5)
BM_Xent_32_10000_cpu 575µs ± 6% 454µs ± 3% -21.00% (p=0.008 n=5+5)
BM_Xent_64_10000_cpu 933µs ± 4% 712µs ± 1% -23.71% (p=0.008 n=5+5)
2019-08-07 12:57:42 -07:00
Rasmus Munk Larsen
0987126165
Clean up unnecessary namespace specifiers in TensorBlock.h.
2019-08-07 12:12:52 -07:00
Gael Guennebaud
0050644b23
Fix doc regarding alignment and c++17
2019-08-04 01:09:41 +02:00
Rasmus Munk Larsen
e2999d4c38
Fix performance regressions due to https://bitbucket.org/eigen/eigen/pull-requests/662 .
...
The change caused the device struct to be copied for each expression evaluation, and caused, e.g., a 10% regression in the TensorFlow multinomial op on GPU:
Benchmark Time(ns) CPU(ns) Iterations
----------------------------------------------------------------------
BM_Multinomial_gpu_1_100000_4 128173 231326 2922 1.610G items/s
VS
Benchmark Time(ns) CPU(ns) Iterations
----------------------------------------------------------------------
BM_Multinomial_gpu_1_100000_4 146683 246914 2719 1.509G items/s
2019-08-02 11:18:13 -07:00