mirror of
https://gitlab.com/libeigen/eigen.git
synced 2024-12-15 07:10:37 +08:00
Fix bugs in Sum.h, add unit-test
This commit is contained in:
parent
c501c7a4ef
commit
ff8e98c974
@ -6,4 +6,4 @@ INSTALL(FILES
|
||||
)
|
||||
|
||||
ADD_SUBDIRECTORY(util)
|
||||
ADD_SUBDIRECTORY(arch)
|
||||
ADD_SUBDIRECTORY(arch)
|
||||
|
@ -201,12 +201,11 @@ struct ei_sum_impl<Derived, LinearVectorization, NoUnrolling>
|
||||
const int alignedEnd = alignedStart + alignedSize;
|
||||
Scalar res;
|
||||
|
||||
if(Derived::SizeAtCompileTime>=2*packetSize && alignedSize >= 2*packetSize)
|
||||
if(alignedSize)
|
||||
{
|
||||
PacketScalar packet_res = mat.template packet<alignment>(alignedStart, alignedStart);
|
||||
PacketScalar packet_res = mat.template packet<alignment>(alignedStart);
|
||||
for(int index = alignedStart + packetSize; index < alignedEnd; index += packetSize)
|
||||
packet_res = ei_padd(packet_res, mat.template packet<alignment>(index));
|
||||
|
||||
res = ei_predux(packet_res);
|
||||
}
|
||||
else // too small to vectorize anything.
|
||||
@ -215,7 +214,7 @@ struct ei_sum_impl<Derived, LinearVectorization, NoUnrolling>
|
||||
res = Scalar(0);
|
||||
}
|
||||
|
||||
for(int index = alignedEnd; index < size; index++)
|
||||
for(int index = 0; index < alignedStart; index++)
|
||||
res += mat.coeff(index);
|
||||
|
||||
for(int index = alignedEnd; index < size; index++)
|
||||
|
@ -89,6 +89,7 @@ EI_ADD_TEST(nomalloc)
|
||||
EI_ADD_TEST(basicstuff)
|
||||
EI_ADD_TEST(linearstructure)
|
||||
EI_ADD_TEST(cwiseop)
|
||||
EI_ADD_TEST(sum)
|
||||
EI_ADD_TEST(product_small)
|
||||
EI_ADD_TEST(product_large ${EI_OFLAG})
|
||||
EI_ADD_TEST(adjoint)
|
||||
|
86
test/sum.cpp
Normal file
86
test/sum.cpp
Normal file
@ -0,0 +1,86 @@
|
||||
// This file is part of Eigen, a lightweight C++ template library
|
||||
// for linear algebra. Eigen itself is part of the KDE project.
|
||||
//
|
||||
// Copyright (C) 2008 Benoit Jacob <jacob@math.jussieu.fr>
|
||||
//
|
||||
// Eigen is free software; you can redistribute it and/or
|
||||
// modify it under the terms of the GNU Lesser General Public
|
||||
// License as published by the Free Software Foundation; either
|
||||
// version 3 of the License, or (at your option) any later version.
|
||||
//
|
||||
// Alternatively, you can redistribute it and/or
|
||||
// modify it under the terms of the GNU General Public License as
|
||||
// published by the Free Software Foundation; either version 2 of
|
||||
// the License, or (at your option) any later version.
|
||||
//
|
||||
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
|
||||
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
|
||||
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
|
||||
// GNU General Public License for more details.
|
||||
//
|
||||
// You should have received a copy of the GNU Lesser General Public
|
||||
// License and a copy of the GNU General Public License along with
|
||||
// Eigen. If not, see <http://www.gnu.org/licenses/>.
|
||||
|
||||
#include "main.h"
|
||||
|
||||
template<typename MatrixType> void matrixSum(const MatrixType& m)
|
||||
{
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
|
||||
int rows = m.rows();
|
||||
int cols = m.cols();
|
||||
|
||||
MatrixType m1 = MatrixType::Random(rows, cols);
|
||||
|
||||
VERIFY_IS_MUCH_SMALLER_THAN(MatrixType::Zero(rows, cols).sum(), Scalar(1));
|
||||
VERIFY_IS_APPROX(MatrixType::Ones(rows, cols).sum(), Scalar(rows*cols));
|
||||
Scalar x = Scalar(0);
|
||||
for(int i = 0; i < rows; i++) for(int j = 0; j < cols; j++) x += m1(i,j);
|
||||
VERIFY_IS_APPROX(m1.sum(), x);
|
||||
}
|
||||
|
||||
template<typename VectorType> void vectorSum(const VectorType& w)
|
||||
{
|
||||
typedef typename VectorType::Scalar Scalar;
|
||||
int size = w.size();
|
||||
|
||||
VectorType v = VectorType::Random(size);
|
||||
for(int i = 1; i < size; i++)
|
||||
{
|
||||
Scalar s = Scalar(0);
|
||||
for(int j = 0; j < i; j++) s += v[j];
|
||||
VERIFY_IS_APPROX(s, v.start(i).sum());
|
||||
}
|
||||
|
||||
for(int i = 0; i < size-1; i++)
|
||||
{
|
||||
Scalar s = Scalar(0);
|
||||
for(int j = i; j < size; j++) s += v[j];
|
||||
VERIFY_IS_APPROX(s, v.end(size-i).sum());
|
||||
}
|
||||
|
||||
for(int i = 0; i < size/2; i++)
|
||||
{
|
||||
Scalar s = Scalar(0);
|
||||
for(int j = i; j < size-i; j++) s += v[j];
|
||||
VERIFY_IS_APPROX(s, v.block(i, size-2*i).sum());
|
||||
}
|
||||
}
|
||||
|
||||
void test_sum()
|
||||
{
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( matrixSum(Matrix<float, 1, 1>()) );
|
||||
CALL_SUBTEST( matrixSum(Matrix2f()) );
|
||||
CALL_SUBTEST( matrixSum(Matrix4d()) );
|
||||
CALL_SUBTEST( matrixSum(MatrixXcf(3, 3)) );
|
||||
CALL_SUBTEST( matrixSum(MatrixXf(8, 12)) );
|
||||
CALL_SUBTEST( matrixSum(MatrixXi(8, 12)) );
|
||||
}
|
||||
for(int i = 0; i < g_repeat; i++) {
|
||||
CALL_SUBTEST( vectorSum(VectorXf(5)) );
|
||||
CALL_SUBTEST( vectorSum(VectorXd(10)) );
|
||||
CALL_SUBTEST( vectorSum(VectorXf(100)) );
|
||||
}
|
||||
}
|
Loading…
Reference in New Issue
Block a user