* move dummy_precision and epsilon to NumTraits

* make NumTraits inherits std::numeric_limits
This commit is contained in:
Gael Guennebaud 2010-02-10 10:52:28 +01:00
parent c11df02f0d
commit fe0827495a
34 changed files with 108 additions and 103 deletions

View File

@ -206,7 +206,7 @@ LDLT<MatrixType>& LDLT<MatrixType>::compute(const MatrixType& a)
// in "Analysis of the Cholesky Decomposition of a Semi-definite Matrix" by
// Nicholas J. Higham. Also see "Accuracy and Stability of Numerical
// Algorithms" page 217, also by Higham.
cutoff = ei_abs(epsilon<Scalar>() * RealScalar(size) * biggest_in_corner);
cutoff = ei_abs(NumTraits<Scalar>::epsilon() * RealScalar(size) * biggest_in_corner);
m_sign = ei_real(m_matrix.diagonal().coeff(index_of_biggest_in_corner)) > 0 ? 1 : -1;
}

View File

@ -381,17 +381,17 @@ template<typename Derived> class DenseBase
template<typename OtherDerived>
bool isApprox(const DenseBase<OtherDerived>& other,
RealScalar prec = dummy_precision<Scalar>()) const;
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isMuchSmallerThan(const RealScalar& other,
RealScalar prec = dummy_precision<Scalar>()) const;
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
template<typename OtherDerived>
bool isMuchSmallerThan(const DenseBase<OtherDerived>& other,
RealScalar prec = dummy_precision<Scalar>()) const;
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isApproxToConstant(const Scalar& value, RealScalar prec = dummy_precision<Scalar>()) const;
bool isConstant(const Scalar& value, RealScalar prec = dummy_precision<Scalar>()) const;
bool isZero(RealScalar prec = dummy_precision<Scalar>()) const;
bool isOnes(RealScalar prec = dummy_precision<Scalar>()) const;
bool isApproxToConstant(const Scalar& value, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isConstant(const Scalar& value, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isZero(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isOnes(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
inline Derived& operator*=(const Scalar& other);
inline Derived& operator/=(const Scalar& other);

View File

@ -146,7 +146,7 @@ std::ostream & ei_print_matrix(std::ostream & s, const Derived& _m, const IOForm
if (NumTraits<Scalar>::HasFloatingPoint)
{
typedef typename NumTraits<Scalar>::Real RealScalar;
RealScalar explicit_precision_fp = std::ceil(-ei_log(epsilon<Scalar>())/ei_log(10.0));
RealScalar explicit_precision_fp = std::ceil(-ei_log(NumTraits<Scalar>::epsilon())/ei_log(10.0));
explicit_precision = static_cast<std::streamsize>(explicit_precision_fp);
}
else

View File

@ -25,13 +25,6 @@
#ifndef EIGEN_MATHFUNCTIONS_H
#define EIGEN_MATHFUNCTIONS_H
template<typename T> inline typename NumTraits<T>::Real epsilon()
{
return std::numeric_limits<typename NumTraits<T>::Real>::epsilon();
}
template<typename T> inline typename NumTraits<T>::Real dummy_precision();
template<typename T> inline T ei_random(T a, T b);
template<typename T> inline T ei_random();
template<typename T> inline T ei_random_amplitude()
@ -55,7 +48,6 @@ template<typename T> inline typename NumTraits<T>::Real ei_hypot(T x, T y)
*** int ***
**************/
template<> inline int dummy_precision<int>() { return 0; }
inline int ei_real(int x) { return x; }
inline int& ei_real_ref(int& x) { return x; }
inline int ei_imag(int) { return 0; }
@ -92,15 +84,15 @@ template<> inline int ei_random()
{
return ei_random<int>(-ei_random_amplitude<int>(), ei_random_amplitude<int>());
}
inline bool ei_isMuchSmallerThan(int a, int, int = dummy_precision<int>())
inline bool ei_isMuchSmallerThan(int a, int, int = NumTraits<int>::dummy_precision())
{
return a == 0;
}
inline bool ei_isApprox(int a, int b, int = dummy_precision<int>())
inline bool ei_isApprox(int a, int b, int = NumTraits<int>::dummy_precision())
{
return a == b;
}
inline bool ei_isApproxOrLessThan(int a, int b, int = dummy_precision<int>())
inline bool ei_isApproxOrLessThan(int a, int b, int = NumTraits<int>::dummy_precision())
{
return a <= b;
}
@ -109,7 +101,6 @@ inline bool ei_isApproxOrLessThan(int a, int b, int = dummy_precision<int>())
*** float ***
**************/
template<> inline float dummy_precision<float>() { return 1e-5f; }
inline float ei_real(float x) { return x; }
inline float& ei_real_ref(float& x) { return x; }
inline float ei_imag(float) { return 0.f; }
@ -140,15 +131,15 @@ template<> inline float ei_random()
{
return ei_random<float>(-ei_random_amplitude<float>(), ei_random_amplitude<float>());
}
inline bool ei_isMuchSmallerThan(float a, float b, float prec = dummy_precision<float>())
inline bool ei_isMuchSmallerThan(float a, float b, float prec = NumTraits<float>::dummy_precision())
{
return ei_abs(a) <= ei_abs(b) * prec;
}
inline bool ei_isApprox(float a, float b, float prec = dummy_precision<float>())
inline bool ei_isApprox(float a, float b, float prec = NumTraits<float>::dummy_precision())
{
return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
}
inline bool ei_isApproxOrLessThan(float a, float b, float prec = dummy_precision<float>())
inline bool ei_isApproxOrLessThan(float a, float b, float prec = NumTraits<float>::dummy_precision())
{
return a <= b || ei_isApprox(a, b, prec);
}
@ -157,8 +148,6 @@ inline bool ei_isApproxOrLessThan(float a, float b, float prec = dummy_precision
*** double ***
**************/
template<> inline double dummy_precision<double>() { return 1e-12; }
inline double ei_real(double x) { return x; }
inline double& ei_real_ref(double& x) { return x; }
inline double ei_imag(double) { return 0.; }
@ -189,15 +178,15 @@ template<> inline double ei_random()
{
return ei_random<double>(-ei_random_amplitude<double>(), ei_random_amplitude<double>());
}
inline bool ei_isMuchSmallerThan(double a, double b, double prec = dummy_precision<double>())
inline bool ei_isMuchSmallerThan(double a, double b, double prec = NumTraits<double>::dummy_precision())
{
return ei_abs(a) <= ei_abs(b) * prec;
}
inline bool ei_isApprox(double a, double b, double prec = dummy_precision<double>())
inline bool ei_isApprox(double a, double b, double prec = NumTraits<double>::dummy_precision())
{
return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
}
inline bool ei_isApproxOrLessThan(double a, double b, double prec = dummy_precision<double>())
inline bool ei_isApproxOrLessThan(double a, double b, double prec = NumTraits<double>::dummy_precision())
{
return a <= b || ei_isApprox(a, b, prec);
}
@ -206,7 +195,6 @@ inline bool ei_isApproxOrLessThan(double a, double b, double prec = dummy_precis
*** complex<float> ***
*********************/
template<> inline float dummy_precision<std::complex<float> >() { return dummy_precision<float>(); }
inline float ei_real(const std::complex<float>& x) { return std::real(x); }
inline float ei_imag(const std::complex<float>& x) { return std::imag(x); }
inline float& ei_real_ref(std::complex<float>& x) { return reinterpret_cast<float*>(&x)[0]; }
@ -225,15 +213,15 @@ template<> inline std::complex<float> ei_random()
{
return std::complex<float>(ei_random<float>(), ei_random<float>());
}
inline bool ei_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b, float prec = dummy_precision<float>())
inline bool ei_isMuchSmallerThan(const std::complex<float>& a, const std::complex<float>& b, float prec = NumTraits<float>::dummy_precision())
{
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
}
inline bool ei_isMuchSmallerThan(const std::complex<float>& a, float b, float prec = dummy_precision<float>())
inline bool ei_isMuchSmallerThan(const std::complex<float>& a, float b, float prec = NumTraits<float>::dummy_precision())
{
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
}
inline bool ei_isApprox(const std::complex<float>& a, const std::complex<float>& b, float prec = dummy_precision<float>())
inline bool ei_isApprox(const std::complex<float>& a, const std::complex<float>& b, float prec = NumTraits<float>::dummy_precision())
{
return ei_isApprox(ei_real(a), ei_real(b), prec)
&& ei_isApprox(ei_imag(a), ei_imag(b), prec);
@ -244,7 +232,6 @@ inline bool ei_isApprox(const std::complex<float>& a, const std::complex<float>&
*** complex<double> ***
**********************/
template<> inline double dummy_precision<std::complex<double> >() { return dummy_precision<double>(); }
inline double ei_real(const std::complex<double>& x) { return std::real(x); }
inline double ei_imag(const std::complex<double>& x) { return std::imag(x); }
inline double& ei_real_ref(std::complex<double>& x) { return reinterpret_cast<double*>(&x)[0]; }
@ -263,15 +250,15 @@ template<> inline std::complex<double> ei_random()
{
return std::complex<double>(ei_random<double>(), ei_random<double>());
}
inline bool ei_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b, double prec = dummy_precision<double>())
inline bool ei_isMuchSmallerThan(const std::complex<double>& a, const std::complex<double>& b, double prec = NumTraits<double>::dummy_precision())
{
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
}
inline bool ei_isMuchSmallerThan(const std::complex<double>& a, double b, double prec = dummy_precision<double>())
inline bool ei_isMuchSmallerThan(const std::complex<double>& a, double b, double prec = NumTraits<double>::dummy_precision())
{
return ei_abs2(a) <= ei_abs2(b) * prec * prec;
}
inline bool ei_isApprox(const std::complex<double>& a, const std::complex<double>& b, double prec = dummy_precision<double>())
inline bool ei_isApprox(const std::complex<double>& a, const std::complex<double>& b, double prec = NumTraits<double>::dummy_precision())
{
return ei_isApprox(ei_real(a), ei_real(b), prec)
&& ei_isApprox(ei_imag(a), ei_imag(b), prec);
@ -283,7 +270,6 @@ inline bool ei_isApprox(const std::complex<double>& a, const std::complex<double
*** long double ***
******************/
template<> inline long double dummy_precision<long double>() { return dummy_precision<double>(); }
inline long double ei_real(long double x) { return x; }
inline long double& ei_real_ref(long double& x) { return x; }
inline long double ei_imag(long double) { return 0.; }
@ -306,15 +292,15 @@ template<> inline long double ei_random()
{
return ei_random<double>(-ei_random_amplitude<double>(), ei_random_amplitude<double>());
}
inline bool ei_isMuchSmallerThan(long double a, long double b, long double prec = dummy_precision<long double>())
inline bool ei_isMuchSmallerThan(long double a, long double b, long double prec = NumTraits<long double>::dummy_precision())
{
return ei_abs(a) <= ei_abs(b) * prec;
}
inline bool ei_isApprox(long double a, long double b, long double prec = dummy_precision<long double>())
inline bool ei_isApprox(long double a, long double b, long double prec = NumTraits<long double>::dummy_precision())
{
return ei_abs(a - b) <= std::min(ei_abs(a), ei_abs(b)) * prec;
}
inline bool ei_isApproxOrLessThan(long double a, long double b, long double prec = dummy_precision<long double>())
inline bool ei_isApproxOrLessThan(long double a, long double b, long double prec = NumTraits<long double>::dummy_precision())
{
return a <= b || ei_isApprox(a, b, prec);
}
@ -323,7 +309,6 @@ inline bool ei_isApproxOrLessThan(long double a, long double b, long double prec
*** bool ***
**************/
template<> inline bool dummy_precision<bool>() { return 0; }
inline bool ei_real(bool x) { return x; }
inline bool& ei_real_ref(bool& x) { return x; }
inline bool ei_imag(bool) { return 0; }
@ -336,15 +321,15 @@ template<> inline bool ei_random()
{
return (ei_random<int>(0,1) == 1);
}
inline bool ei_isMuchSmallerThan(bool a, bool, bool = dummy_precision<bool>())
inline bool ei_isMuchSmallerThan(bool a, bool, bool = NumTraits<bool>::dummy_precision())
{
return !a;
}
inline bool ei_isApprox(bool a, bool b, bool = dummy_precision<bool>())
inline bool ei_isApprox(bool a, bool b, bool = NumTraits<bool>::dummy_precision())
{
return a == b;
}
inline bool ei_isApproxOrLessThan(bool a, bool b, bool = dummy_precision<bool>())
inline bool ei_isApproxOrLessThan(bool a, bool b, bool = NumTraits<bool>::dummy_precision())
{
return int(a) <= int(b);
}

View File

@ -253,16 +253,16 @@ template<typename Derived> class MatrixBase
Derived& setIdentity();
Derived& setIdentity(int rows, int cols);
bool isIdentity(RealScalar prec = dummy_precision<Scalar>()) const;
bool isDiagonal(RealScalar prec = dummy_precision<Scalar>()) const;
bool isIdentity(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isDiagonal(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isUpperTriangular(RealScalar prec = dummy_precision<Scalar>()) const;
bool isLowerTriangular(RealScalar prec = dummy_precision<Scalar>()) const;
bool isUpperTriangular(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isLowerTriangular(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
template<typename OtherDerived>
bool isOrthogonal(const MatrixBase<OtherDerived>& other,
RealScalar prec = dummy_precision<Scalar>()) const;
bool isUnitary(RealScalar prec = dummy_precision<Scalar>()) const;
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
bool isUnitary(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
/** \returns true if each coefficients of \c *this and \a other are all exactly equal.
* \warning When using floating point scalar values you probably should rather use a
@ -310,13 +310,13 @@ template<typename Derived> class MatrixBase
ResultType& inverse,
typename ResultType::Scalar& determinant,
bool& invertible,
const RealScalar& absDeterminantThreshold = dummy_precision<Scalar>()
const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()
) const;
template<typename ResultType>
void computeInverseWithCheck(
ResultType& inverse,
bool& invertible,
const RealScalar& absDeterminantThreshold = dummy_precision<Scalar>()
const RealScalar& absDeterminantThreshold = NumTraits<Scalar>::dummy_precision()
) const;
Scalar determinant() const;

View File

@ -49,6 +49,7 @@
template<typename T> struct NumTraits;
template<> struct NumTraits<int>
: std::numeric_limits<int>
{
typedef int Real;
typedef double FloatingPoint;
@ -60,9 +61,12 @@ template<> struct NumTraits<int>
AddCost = 1,
MulCost = 1
};
inline static int dummy_precision() { return 0; }
};
template<> struct NumTraits<float>
: std::numeric_limits<float>
{
typedef float Real;
typedef float FloatingPoint;
@ -74,9 +78,12 @@ template<> struct NumTraits<float>
AddCost = 1,
MulCost = 1
};
inline static float dummy_precision() { return 1e-5f; }
};
template<> struct NumTraits<double>
: std::numeric_limits<double>
{
typedef double Real;
typedef double FloatingPoint;
@ -88,9 +95,12 @@ template<> struct NumTraits<double>
AddCost = 1,
MulCost = 1
};
inline static double dummy_precision() { return 1e-12; }
};
template<typename _Real> struct NumTraits<std::complex<_Real> >
: std::numeric_limits<std::complex<_Real> >
{
typedef _Real Real;
typedef std::complex<_Real> FloatingPoint;
@ -102,9 +112,13 @@ template<typename _Real> struct NumTraits<std::complex<_Real> >
AddCost = 2 * NumTraits<Real>::AddCost,
MulCost = 4 * NumTraits<Real>::MulCost + 2 * NumTraits<Real>::AddCost
};
inline static Real epsilon() { return std::numeric_limits<Real>::epsilon(); }
inline static Real dummy_precision() { return NumTraits<Real>::dummy_precision(); }
};
template<> struct NumTraits<long long int>
: std::numeric_limits<long long int>
{
typedef long long int Real;
typedef long double FloatingPoint;
@ -119,6 +133,7 @@ template<> struct NumTraits<long long int>
};
template<> struct NumTraits<long double>
: std::numeric_limits<long double>
{
typedef long double Real;
typedef long double FloatingPoint;
@ -130,9 +145,12 @@ template<> struct NumTraits<long double>
AddCost = 1,
MulCost = 1
};
static inline long double dummy_precision() { return NumTraits<double>::dummy_precision(); }
};
template<> struct NumTraits<bool>
: std::numeric_limits<bool>
{
typedef bool Real;
typedef float FloatingPoint;
@ -144,6 +162,8 @@ template<> struct NumTraits<bool>
AddCost = 1,
MulCost = 1
};
inline static bool dummy_precision() { return 0; }
};
#endif // EIGEN_NUMTRAITS_H

View File

@ -94,7 +94,7 @@ void ComplexEigenSolver<MatrixType>::compute(const MatrixType& matrix)
m_eivalues.resize(n,1);
m_eivec.resize(n,n);
RealScalar eps = epsilon<RealScalar>();
RealScalar eps = NumTraits<RealScalar>::epsilon();
// Reduce to complex Schur form
ComplexSchur<MatrixType> schur(matrix);

View File

@ -159,7 +159,7 @@ void ComplexSchur<MatrixType>::compute(const MatrixType& matrix, bool skipU)
RealScalar d,sd,sf;
Complex c,b,disc,r1,r2,kappa;
RealScalar eps = epsilon<RealScalar>();
RealScalar eps = NumTraits<RealScalar>::epsilon();
int iter = 0;
while(true)

View File

@ -171,7 +171,7 @@ EIGEN_MAKE_ALIGNED_OPERATOR_NEW_IF_VECTORIZABLE_FIXED_SIZE(_Scalar,_AmbientDim)
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const AlignedBox& other, typename NumTraits<Scalar>::Real prec = dummy_precision<Scalar>()) const
bool isApprox(const AlignedBox& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_min.isApprox(other.m_min, prec) && m_max.isApprox(other.m_max, prec); }
protected:

View File

@ -146,7 +146,7 @@ public:
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = dummy_precision<Scalar>()) const
bool isApprox(const AngleAxis& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_axis.isApprox(other.m_axis, prec) && ei_isApprox(m_angle,other.m_angle, prec); }
};
@ -165,7 +165,7 @@ template<typename QuatDerived>
AngleAxis<Scalar>& AngleAxis<Scalar>::operator=(const QuaternionBase<QuatDerived>& q)
{
Scalar n2 = q.vec().squaredNorm();
if (n2 < dummy_precision<Scalar>()*dummy_precision<Scalar>())
if (n2 < NumTraits<Scalar>::dummy_precision()*NumTraits<Scalar>::dummy_precision())
{
m_angle = 0;
m_axis << 1, 0, 0;

View File

@ -50,7 +50,7 @@ MatrixBase<Derived>::eulerAngles(int a0, int a1, int a2) const
Matrix<Scalar,3,1> res;
typedef Matrix<typename Derived::Scalar,2,1> Vector2;
const Scalar epsilon = dummy_precision<Scalar>();
const Scalar epsilon = NumTraits<Scalar>::dummy_precision();
const int odd = ((a0+1)%3 == a1) ? 0 : 1;
const int i = a0;

View File

@ -257,7 +257,7 @@ public:
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = dummy_precision<Scalar>()) const
bool isApprox(const Hyperplane& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
protected:

View File

@ -123,7 +123,7 @@ public:
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const ParametrizedLine& other, typename NumTraits<Scalar>::Real prec = dummy_precision<Scalar>()) const
bool isApprox(const ParametrizedLine& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_origin.isApprox(other.m_origin, prec) && m_direction.isApprox(other.m_direction, prec); }
protected:

View File

@ -163,7 +163,7 @@ public:
*
* \sa MatrixBase::isApprox() */
template<class OtherDerived>
bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = dummy_precision<Scalar>()) const
bool isApprox(const QuaternionBase<OtherDerived>& other, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
{ return coeffs().isApprox(other.coeffs(), prec); }
/** return the result vector of \a v through the rotation*/
@ -508,7 +508,7 @@ inline Derived& QuaternionBase<Derived>::setFromTwoVectors(const MatrixBase<Deri
// under the constraint:
// ||x|| = 1
// which yields a singular value problem
if (c < Scalar(-1)+dummy_precision<Scalar>())
if (c < Scalar(-1)+NumTraits<Scalar>::dummy_precision())
{
c = std::max<Scalar>(c,-1);
Matrix<Scalar,2,3> m; m << v0.transpose(), v1.transpose();
@ -584,7 +584,7 @@ template <class OtherDerived>
Quaternion<typename ei_traits<Derived>::Scalar>
QuaternionBase<Derived>::slerp(Scalar t, const QuaternionBase<OtherDerived>& other) const
{
static const Scalar one = Scalar(1) - epsilon<Scalar>();
static const Scalar one = Scalar(1) - NumTraits<Scalar>::epsilon();
Scalar d = this->dot(other);
Scalar absD = ei_abs(d);

View File

@ -121,7 +121,7 @@ public:
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = dummy_precision<Scalar>()) const
bool isApprox(const Rotation2D& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
{ return ei_isApprox(m_angle,other.m_angle, prec); }
};

View File

@ -107,7 +107,7 @@ public:
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const UniformScaling& other, typename NumTraits<Scalar>::Real prec = dummy_precision<Scalar>()) const
bool isApprox(const UniformScaling& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
{ return ei_isApprox(m_factor, other.factor(), prec); }
};

View File

@ -429,7 +429,7 @@ public:
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = dummy_precision<Scalar>()) const
bool isApprox(const Transform& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_matrix.isApprox(other.m_matrix, prec); }
/** Sets the last row to [0 ... 0 1]

View File

@ -154,7 +154,7 @@ public:
* determined by \a prec.
*
* \sa MatrixBase::isApprox() */
bool isApprox(const Translation& other, typename NumTraits<Scalar>::Real prec = dummy_precision<Scalar>()) const
bool isApprox(const Translation& other, typename NumTraits<Scalar>::Real prec = NumTraits<Scalar>::dummy_precision()) const
{ return m_coeffs.isApprox(other.m_coeffs, prec); }
};

View File

@ -276,7 +276,7 @@ template<typename _MatrixType> class FullPivLU
return m_usePrescribedThreshold ? m_prescribedThreshold
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
// and turns out to be identical to Higham's formula used already in LDLt.
: epsilon<Scalar>() * m_lu.diagonalSize();
: NumTraits<Scalar>::epsilon() * m_lu.diagonalSize();
}
/** \returns the rank of the matrix of which *this is the LU decomposition.

View File

@ -282,7 +282,7 @@ template<typename _MatrixType> class ColPivHouseholderQR
return m_usePrescribedThreshold ? m_prescribedThreshold
// this formula comes from experimenting (see "LU precision tuning" thread on the list)
// and turns out to be identical to Higham's formula used already in LDLt.
: epsilon<Scalar>() * m_qr.diagonalSize();
: NumTraits<Scalar>::epsilon() * m_qr.diagonalSize();
}
/** \returns the number of nonzero pivots in the QR decomposition.
@ -350,7 +350,7 @@ ColPivHouseholderQR<MatrixType>& ColPivHouseholderQR<MatrixType>::compute(const
for(int k = 0; k < cols; ++k)
colSqNorms.coeffRef(k) = m_qr.col(k).squaredNorm();
RealScalar threshold_helper = colSqNorms.maxCoeff() * ei_abs2(epsilon<Scalar>()) / rows;
RealScalar threshold_helper = colSqNorms.maxCoeff() * ei_abs2(NumTraits<Scalar>::epsilon()) / rows;
m_nonzero_pivots = size; // the generic case is that in which all pivots are nonzero (invertible case)
m_maxpivot = RealScalar(0);

View File

@ -270,7 +270,7 @@ FullPivHouseholderQR<MatrixType>& FullPivHouseholderQR<MatrixType>::compute(cons
RowVectorType temp(cols);
m_precision = epsilon<Scalar>() * size;
m_precision = NumTraits<Scalar>::epsilon() * size;
m_rows_transpositions.resize(matrix.rows());
IntRowVectorType cols_transpositions(matrix.cols());
@ -370,7 +370,7 @@ struct ei_solve_retval<FullPivHouseholderQR<_MatrixType>, Rhs>
RealScalar biggest_in_upper_part_of_c = c.corner(TopLeft, dec().rank(), c.cols()).cwiseAbs().maxCoeff();
RealScalar biggest_in_lower_part_of_c = c.corner(BottomLeft, rows-dec().rank(), c.cols()).cwiseAbs().maxCoeff();
// FIXME brain dead
const RealScalar m_precision = epsilon<Scalar>() * std::min(rows,cols);
const RealScalar m_precision = NumTraits<Scalar>::epsilon() * std::min(rows,cols);
if(!ei_isMuchSmallerThan(biggest_in_lower_part_of_c, biggest_in_upper_part_of_c, m_precision))
return;
}

View File

@ -295,7 +295,7 @@ JacobiSVD<MatrixType, Options>& JacobiSVD<MatrixType, Options>::compute(const Ma
int cols = matrix.cols();
int diagSize = std::min(rows, cols);
m_singularValues.resize(diagSize);
const RealScalar precision = 2 * epsilon<Scalar>();
const RealScalar precision = 2 * NumTraits<Scalar>::epsilon();
if(!ei_svd_precondition_if_more_rows_than_cols<MatrixType, Options>::run(matrix, work_matrix, *this)
&& !ei_svd_precondition_if_more_cols_than_rows<MatrixType, Options>::run(matrix, work_matrix, *this))

View File

@ -193,7 +193,7 @@ SVD<MatrixType>& SVD<MatrixType>::compute(const MatrixType& matrix)
int i=0,its=0,j=0,k=0,l=0,nm=0;
Scalar anorm, c, f, g, h, s, scale, x, y, z;
bool convergence = true;
Scalar eps = dummy_precision<Scalar>();
Scalar eps = NumTraits<Scalar>::dummy_precision();
Matrix<Scalar,Dynamic,1> rv1(n);
g = scale = anorm = 0;

View File

@ -296,7 +296,7 @@ class AmbiVector<_Scalar>::Iterator
* In practice, all coefficients having a magnitude smaller than \a epsilon
* are skipped.
*/
Iterator(const AmbiVector& vec, RealScalar epsilon = RealScalar(0.1)*dummy_precision<RealScalar>())
Iterator(const AmbiVector& vec, RealScalar epsilon = RealScalar(0.1)*NumTraits<RealScalar>::dummy_precision())
: m_vector(vec)
{
m_epsilon = epsilon;

View File

@ -185,7 +185,7 @@ class CompressedStorage
return m_values[id];
}
void prune(Scalar reference, RealScalar epsilon = dummy_precision<RealScalar>())
void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
{
size_t k = 0;
size_t n = size();

View File

@ -209,7 +209,7 @@ class DynamicSparseMatrix
inline void finalize() {}
void prune(Scalar reference, RealScalar epsilon = dummy_precision<RealScalar>())
void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
{
for (int j=0; j<outerSize(); ++j)
m_data[j].prune(reference,epsilon);

View File

@ -94,7 +94,7 @@ class SparseLDLT
: m_flags(flags), m_status(0)
{
ei_assert((MatrixType::Flags&RowMajorBit)==0);
m_precision = RealScalar(0.1) * Eigen::dummy_precision<RealScalar>();
m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
}
/** Creates a LDLT object and compute the respective factorization of \a matrix using
@ -103,7 +103,7 @@ class SparseLDLT
: m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0)
{
ei_assert((MatrixType::Flags&RowMajorBit)==0);
m_precision = RealScalar(0.1) * Eigen::dummy_precision<RealScalar>();
m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
compute(matrix);
}

View File

@ -54,7 +54,7 @@ class SparseLLT
SparseLLT(int flags = 0)
: m_flags(flags), m_status(0)
{
m_precision = RealScalar(0.1) * Eigen::dummy_precision<RealScalar>();
m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
}
/** Creates a LLT object and compute the respective factorization of \a matrix using
@ -62,7 +62,7 @@ class SparseLLT
SparseLLT(const MatrixType& matrix, int flags = 0)
: m_matrix(matrix.rows(), matrix.cols()), m_flags(flags), m_status(0)
{
m_precision = RealScalar(0.1) * Eigen::dummy_precision<RealScalar>();
m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
compute(matrix);
}

View File

@ -59,7 +59,7 @@ class SparseLU
SparseLU(int flags = 0)
: m_flags(flags), m_status(0)
{
m_precision = RealScalar(0.1) * Eigen::dummy_precision<RealScalar>();
m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
}
/** Creates a LU object and compute the respective factorization of \a matrix using
@ -67,7 +67,7 @@ class SparseLU
SparseLU(const MatrixType& matrix, int flags = 0)
: /*m_matrix(matrix.rows(), matrix.cols()),*/ m_flags(flags), m_status(0)
{
m_precision = RealScalar(0.1) * Eigen::dummy_precision<RealScalar>();
m_precision = RealScalar(0.1) * Eigen::NumTraits<RealScalar>::dummy_precision();
compute(matrix);
}

View File

@ -350,7 +350,7 @@ class SparseMatrix
}
}
void prune(Scalar reference, RealScalar epsilon = dummy_precision<RealScalar>())
void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
{
int k = 0;
for (int j=0; j<m_outerSize; ++j)

View File

@ -513,32 +513,32 @@ template<typename Derived> class SparseMatrixBase : public AnyMatrixBase<Derived
template<typename OtherDerived>
bool isApprox(const SparseMatrixBase<OtherDerived>& other,
RealScalar prec = dummy_precision<Scalar>()) const
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
{ return toDense().isApprox(other.toDense(),prec); }
template<typename OtherDerived>
bool isApprox(const MatrixBase<OtherDerived>& other,
RealScalar prec = dummy_precision<Scalar>()) const
RealScalar prec = NumTraits<Scalar>::dummy_precision()) const
{ return toDense().isApprox(other,prec); }
// bool isMuchSmallerThan(const RealScalar& other,
// RealScalar prec = dummy_precision<Scalar>()) const;
// RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// template<typename OtherDerived>
// bool isMuchSmallerThan(const MatrixBase<OtherDerived>& other,
// RealScalar prec = dummy_precision<Scalar>()) const;
// RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isApproxToConstant(const Scalar& value, RealScalar prec = dummy_precision<Scalar>()) const;
// bool isZero(RealScalar prec = dummy_precision<Scalar>()) const;
// bool isOnes(RealScalar prec = dummy_precision<Scalar>()) const;
// bool isIdentity(RealScalar prec = dummy_precision<Scalar>()) const;
// bool isDiagonal(RealScalar prec = dummy_precision<Scalar>()) const;
// bool isApproxToConstant(const Scalar& value, RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isZero(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isOnes(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isIdentity(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isDiagonal(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isUpper(RealScalar prec = dummy_precision<Scalar>()) const;
// bool isLower(RealScalar prec = dummy_precision<Scalar>()) const;
// bool isUpper(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isLower(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// template<typename OtherDerived>
// bool isOrthogonal(const MatrixBase<OtherDerived>& other,
// RealScalar prec = dummy_precision<Scalar>()) const;
// bool isUnitary(RealScalar prec = dummy_precision<Scalar>()) const;
// RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// bool isUnitary(RealScalar prec = NumTraits<Scalar>::dummy_precision()) const;
// template<typename OtherDerived>
// inline bool operator==(const MatrixBase<OtherDerived>& other) const

View File

@ -202,7 +202,7 @@ class SparseVector
EIGEN_DEPRECATED void endFill() {}
inline void finalize() {}
void prune(Scalar reference, RealScalar epsilon = dummy_precision<RealScalar>())
void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision())
{
m_data.prune(reference,epsilon);
}

View File

@ -35,7 +35,7 @@ template<typename MatrixType> void inverse_permutation_4x4()
{
MatrixType m = PermutationMatrix<4>(indices);
MatrixType inv = m.inverse();
double error = double( (m*inv-MatrixType::Identity()).norm() / epsilon<Scalar>() );
double error = double( (m*inv-MatrixType::Identity()).norm() / NumTraits<Scalar>::epsilon() );
VERIFY(error == 0.0);
std::next_permutation(indices.data(),indices.data()+4);
}
@ -53,9 +53,9 @@ template<typename MatrixType> void inverse_general_4x4(int repeat)
do {
m = MatrixType::Random();
absdet = ei_abs(m.determinant());
} while(absdet < epsilon<Scalar>());
} while(absdet < NumTraits<Scalar>::epsilon());
MatrixType inv = m.inverse();
double error = double( (m*inv-MatrixType::Identity()).norm() * absdet / epsilon<Scalar>() );
double error = double( (m*inv-MatrixType::Identity()).norm() * absdet / NumTraits<Scalar>::epsilon() );
error_sum += error;
error_max = std::max(error_max, error);
}

View File

@ -26,7 +26,7 @@
#include <Eigen/QR>
template<typename Derived1, typename Derived2>
bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = dummy_precision<typename Derived1::RealScalar>())
bool areNotApprox(const MatrixBase<Derived1>& m1, const MatrixBase<Derived2>& m2, typename Derived1::RealScalar epsilon = NumTraits<typename Derived1::RealScalar>::dummy_precision())
{
return !((m1-m2).cwiseAbs2().maxCoeff() < epsilon * epsilon
* std::max(m1.cwiseAbs2().maxCoeff(), m2.cwiseAbs2().maxCoeff()));