mirror of
https://gitlab.com/libeigen/eigen.git
synced 2025-04-18 19:30:38 +08:00
* Clean a bit the eigenvalue solver: if the matrix is known to be
selfadjoint at compile time, then it returns real eigenvalues. * Fix a couple of bugs with the new product.
This commit is contained in:
parent
3eccfd1a78
commit
fd2e9e5c3c
@ -143,6 +143,7 @@ template<typename Lhs, typename Rhs> struct ei_product_eval_mode
|
||||
{
|
||||
enum{ value = Lhs::MaxRowsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
&& Rhs::MaxColsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
&& Lhs::MaxColsAtCompileTime >= EIGEN_CACHEFRIENDLY_PRODUCT_THRESHOLD
|
||||
? CacheFriendlyProduct : NormalProduct };
|
||||
};
|
||||
|
||||
@ -188,7 +189,7 @@ template<typename T, int n=1> struct ei_product_nested_lhs
|
||||
(ei_traits<T>::Flags & EvalBeforeNestingBit)
|
||||
|| (!(ei_traits<T>::Flags & DirectAccessBit))
|
||||
|| (n+1) * NumTraits<typename ei_traits<T>::Scalar>::ReadCost < (n-1) * T::CoeffReadCost,
|
||||
typename ei_product_eval_to_column_major<T>::type,
|
||||
typename ei_eval<T>::type,
|
||||
const T&
|
||||
>::ret
|
||||
>::ret type;
|
||||
@ -201,7 +202,7 @@ struct ei_traits<Product<Lhs, Rhs, EvalMode> >
|
||||
// the cache friendly product evals lhs once only
|
||||
// FIXME what to do if we chose to dynamically call the normal product from the cache friendly one for small matrices ?
|
||||
typedef typename ei_meta_if<EvalMode==CacheFriendlyProduct,
|
||||
typename ei_product_nested_lhs<Rhs,0>::type,
|
||||
typename ei_product_nested_lhs<Lhs,0>::type,
|
||||
typename ei_nested<Lhs,Rhs::ColsAtCompileTime>::type>::ret LhsNested;
|
||||
|
||||
// NOTE that rhs must be ColumnMajor, so we might need a special nested type calculation
|
||||
|
@ -30,94 +30,117 @@
|
||||
* \brief Eigen values/vectors solver
|
||||
*
|
||||
* \param MatrixType the type of the matrix of which we are computing the eigen decomposition
|
||||
* \param IsSelfadjoint tells the input matrix is guaranteed to be selfadjoint (hermitian). In that case the
|
||||
* return type of eigenvalues() is a real vector.
|
||||
*
|
||||
* Currently it only support real matrices.
|
||||
*
|
||||
* \note this code was adapted from JAMA (public domain)
|
||||
*
|
||||
* \sa MatrixBase::eigenvalues()
|
||||
*/
|
||||
template<typename _MatrixType> class EigenSolver
|
||||
template<typename _MatrixType, bool IsSelfadjoint=false> class EigenSolver
|
||||
{
|
||||
public:
|
||||
|
||||
typedef _MatrixType MatrixType;
|
||||
typedef typename MatrixType::Scalar Scalar;
|
||||
typedef Matrix<Scalar, MatrixType::ColsAtCompileTime, 1> VectorType;
|
||||
typedef typename NumTraits<Scalar>::Real RealScalar;
|
||||
typedef std::complex<RealScalar> Complex;
|
||||
typedef Matrix<typename ei_meta_if<IsSelfadjoint, Scalar, Complex>::ret, MatrixType::ColsAtCompileTime, 1> EigenvalueType;
|
||||
typedef Matrix<RealScalar, MatrixType::ColsAtCompileTime, 1> RealVectorType;
|
||||
|
||||
EigenSolver(const MatrixType& matrix)
|
||||
: m_eivec(matrix.rows(), matrix.cols()),
|
||||
m_eivalr(matrix.cols()), m_eivali(matrix.cols()),
|
||||
m_H(matrix.rows(), matrix.cols()),
|
||||
m_ort(matrix.cols())
|
||||
m_eivalues(matrix.cols())
|
||||
{
|
||||
_compute(matrix);
|
||||
}
|
||||
|
||||
MatrixType eigenvectors(void) const { return m_eivec; }
|
||||
|
||||
VectorType eigenvalues(void) const { return m_eivalr; }
|
||||
EigenvalueType eigenvalues(void) const { return m_eivalues; }
|
||||
|
||||
private:
|
||||
|
||||
void _compute(const MatrixType& matrix);
|
||||
void _compute(const MatrixType& matrix)
|
||||
{
|
||||
computeImpl(matrix, typename ei_meta_if<IsSelfadjoint, ei_meta_true, ei_meta_false>::ret());
|
||||
}
|
||||
void computeImpl(const MatrixType& matrix, ei_meta_true isSelfadjoint);
|
||||
void computeImpl(const MatrixType& matrix, ei_meta_false isNotSelfadjoint);
|
||||
|
||||
void tridiagonalization(void);
|
||||
void tql2(void);
|
||||
void tridiagonalization(RealVectorType& eivalr, RealVectorType& eivali);
|
||||
void tql2(RealVectorType& eivalr, RealVectorType& eivali);
|
||||
|
||||
void orthes(void);
|
||||
void hqr2(void);
|
||||
void orthes(MatrixType& matH, RealVectorType& ort);
|
||||
void hqr2(MatrixType& matH, RealVectorType& ort);
|
||||
|
||||
protected:
|
||||
MatrixType m_eivec;
|
||||
VectorType m_eivalr, m_eivali;
|
||||
MatrixType m_H;
|
||||
VectorType m_ort;
|
||||
bool m_isSymmetric;
|
||||
EigenvalueType m_eivalues;
|
||||
};
|
||||
|
||||
template<typename MatrixType>
|
||||
void EigenSolver<MatrixType>::_compute(const MatrixType& matrix)
|
||||
template<typename MatrixType, bool IsSelfadjoint>
|
||||
void EigenSolver<MatrixType,IsSelfadjoint>::computeImpl(const MatrixType& matrix, ei_meta_true)
|
||||
{
|
||||
assert(matrix.cols() == matrix.rows());
|
||||
|
||||
m_isSymmetric = true;
|
||||
int n = matrix.cols();
|
||||
for (int j = 0; (j < n) && m_isSymmetric; j++) {
|
||||
for (int i = 0; (i < j) && m_isSymmetric; i++) {
|
||||
m_isSymmetric = (matrix(i,j) == matrix(j,i));
|
||||
}
|
||||
}
|
||||
m_eivalues.resize(n,1);
|
||||
|
||||
RealVectorType eivali(n);
|
||||
m_eivec = matrix;
|
||||
|
||||
m_eivalr.resize(n,1);
|
||||
m_eivali.resize(n,1);
|
||||
// Tridiagonalize.
|
||||
tridiagonalization(m_eivalues, eivali);
|
||||
|
||||
if (m_isSymmetric)
|
||||
// Diagonalize.
|
||||
tql2(m_eivalues, eivali);
|
||||
}
|
||||
|
||||
template<typename MatrixType, bool IsSelfadjoint>
|
||||
void EigenSolver<MatrixType,IsSelfadjoint>::computeImpl(const MatrixType& matrix, ei_meta_false)
|
||||
{
|
||||
assert(matrix.cols() == matrix.rows());
|
||||
int n = matrix.cols();
|
||||
m_eivalues.resize(n,1);
|
||||
|
||||
bool isSelfadjoint = true;
|
||||
for (int j = 0; (j < n) && isSelfadjoint; j++)
|
||||
for (int i = 0; (i < j) && isSelfadjoint; i++)
|
||||
isSelfadjoint = (matrix(i,j) == matrix(j,i));
|
||||
|
||||
if (isSelfadjoint)
|
||||
{
|
||||
RealVectorType eivalr(n);
|
||||
RealVectorType eivali(n);
|
||||
m_eivec = matrix;
|
||||
|
||||
|
||||
// Tridiagonalize.
|
||||
tridiagonalization();
|
||||
|
||||
tridiagonalization(eivalr, eivali);
|
||||
|
||||
// Diagonalize.
|
||||
tql2();
|
||||
tql2(eivalr, eivali);
|
||||
|
||||
m_eivalues = eivalr.template cast<Complex>();
|
||||
}
|
||||
else
|
||||
{
|
||||
m_H = matrix;
|
||||
m_ort.resize(n, 1);
|
||||
|
||||
MatrixType matH = matrix;
|
||||
RealVectorType ort(n);
|
||||
|
||||
// Reduce to Hessenberg form.
|
||||
orthes();
|
||||
|
||||
orthes(matH, ort);
|
||||
|
||||
// Reduce Hessenberg to real Schur form.
|
||||
hqr2();
|
||||
hqr2(matH, ort);
|
||||
}
|
||||
std::cout << m_eivali.transpose() << "\n";
|
||||
}
|
||||
|
||||
|
||||
// Symmetric Householder reduction to tridiagonal form.
|
||||
template<typename MatrixType>
|
||||
void EigenSolver<MatrixType>::tridiagonalization(void)
|
||||
template<typename MatrixType, bool IsSelfadjoint>
|
||||
void EigenSolver<MatrixType,IsSelfadjoint>::tridiagonalization(RealVectorType& eivalr, RealVectorType& eivali)
|
||||
{
|
||||
|
||||
// This is derived from the Algol procedures tred2 by
|
||||
@ -126,7 +149,7 @@ void EigenSolver<MatrixType>::tridiagonalization(void)
|
||||
// Fortran subroutine in EISPACK.
|
||||
|
||||
int n = m_eivec.cols();
|
||||
m_eivalr = m_eivec.row(m_eivalr.size()-1);
|
||||
eivalr = m_eivec.row(eivalr.size()-1);
|
||||
|
||||
// Householder reduction to tridiagonal form.
|
||||
for (int i = n-1; i > 0; i--)
|
||||
@ -134,55 +157,55 @@ void EigenSolver<MatrixType>::tridiagonalization(void)
|
||||
// Scale to avoid under/overflow.
|
||||
Scalar scale = 0.0;
|
||||
Scalar h = 0.0;
|
||||
scale = m_eivalr.start(i).cwiseAbs().sum();
|
||||
scale = eivalr.start(i).cwiseAbs().sum();
|
||||
|
||||
if (scale == 0.0)
|
||||
{
|
||||
m_eivali[i] = m_eivalr[i-1];
|
||||
m_eivalr.start(i) = m_eivec.row(i-1).start(i);
|
||||
eivali[i] = eivalr[i-1];
|
||||
eivalr.start(i) = m_eivec.row(i-1).start(i);
|
||||
m_eivec.corner(TopLeft, i, i) = m_eivec.corner(TopLeft, i, i).diagonal().asDiagonal();
|
||||
}
|
||||
else
|
||||
{
|
||||
// Generate Householder vector.
|
||||
m_eivalr.start(i) /= scale;
|
||||
h = m_eivalr.start(i).cwiseAbs2().sum();
|
||||
eivalr.start(i) /= scale;
|
||||
h = eivalr.start(i).cwiseAbs2().sum();
|
||||
|
||||
Scalar f = m_eivalr[i-1];
|
||||
Scalar f = eivalr[i-1];
|
||||
Scalar g = ei_sqrt(h);
|
||||
if (f > 0)
|
||||
g = -g;
|
||||
m_eivali[i] = scale * g;
|
||||
eivali[i] = scale * g;
|
||||
h = h - f * g;
|
||||
m_eivalr[i-1] = f - g;
|
||||
m_eivali.start(i).setZero();
|
||||
eivalr[i-1] = f - g;
|
||||
eivali.start(i).setZero();
|
||||
|
||||
// Apply similarity transformation to remaining columns.
|
||||
for (int j = 0; j < i; j++)
|
||||
{
|
||||
f = m_eivalr[j];
|
||||
f = eivalr[j];
|
||||
m_eivec(j,i) = f;
|
||||
g = m_eivali[j] + m_eivec(j,j) * f;
|
||||
g = eivali[j] + m_eivec(j,j) * f;
|
||||
int bSize = i-j-1;
|
||||
if (bSize>0)
|
||||
{
|
||||
g += (m_eivec.col(j).block(j+1, bSize).transpose() * m_eivalr.block(j+1, bSize))(0,0);
|
||||
m_eivali.block(j+1, bSize) += m_eivec.col(j).block(j+1, bSize) * f;
|
||||
g += (m_eivec.col(j).block(j+1, bSize).transpose() * eivalr.block(j+1, bSize))(0,0);
|
||||
eivali.block(j+1, bSize) += m_eivec.col(j).block(j+1, bSize) * f;
|
||||
}
|
||||
m_eivali[j] = g;
|
||||
eivali[j] = g;
|
||||
}
|
||||
|
||||
f = (m_eivali.start(i).transpose() * m_eivalr.start(i))(0,0);
|
||||
m_eivali.start(i) = (m_eivali.start(i) - (f / (h + h)) * m_eivalr.start(i))/h;
|
||||
f = (eivali.start(i).transpose() * eivalr.start(i))(0,0);
|
||||
eivali.start(i) = (eivali.start(i) - (f / (h + h)) * eivalr.start(i))/h;
|
||||
|
||||
m_eivec.corner(TopLeft, i, i).lower() -=
|
||||
( (m_eivali.start(i) * m_eivalr.start(i).transpose()).lazy()
|
||||
+ (m_eivalr.start(i) * m_eivali.start(i).transpose()).lazy());
|
||||
( (eivali.start(i) * eivalr.start(i).transpose()).lazy()
|
||||
+ (eivalr.start(i) * eivali.start(i).transpose()).lazy());
|
||||
|
||||
m_eivalr.start(i) = m_eivec.row(i-1).start(i);
|
||||
eivalr.start(i) = m_eivec.row(i-1).start(i);
|
||||
m_eivec.row(i).start(i).setZero();
|
||||
}
|
||||
m_eivalr[i] = h;
|
||||
eivalr[i] = h;
|
||||
}
|
||||
|
||||
// Accumulate transformations.
|
||||
@ -190,39 +213,38 @@ void EigenSolver<MatrixType>::tridiagonalization(void)
|
||||
{
|
||||
m_eivec(n-1,i) = m_eivec(i,i);
|
||||
m_eivec(i,i) = 1.0;
|
||||
Scalar h = m_eivalr[i+1];
|
||||
Scalar h = eivalr[i+1];
|
||||
// FIXME this does not looks very stable ;)
|
||||
if (h != 0.0)
|
||||
{
|
||||
m_eivalr.start(i+1) = m_eivec.col(i+1).start(i+1) / h;
|
||||
m_eivec.corner(TopLeft, i+1, i+1) -= m_eivalr.start(i+1)
|
||||
eivalr.start(i+1) = m_eivec.col(i+1).start(i+1) / h;
|
||||
m_eivec.corner(TopLeft, i+1, i+1) -= eivalr.start(i+1)
|
||||
* ( m_eivec.col(i+1).start(i+1).transpose() * m_eivec.corner(TopLeft, i+1, i+1) );
|
||||
}
|
||||
m_eivec.col(i+1).start(i+1).setZero();
|
||||
}
|
||||
m_eivalr = m_eivec.row(m_eivalr.size()-1);
|
||||
m_eivec.row(m_eivalr.size()-1).setZero();
|
||||
eivalr = m_eivec.row(eivalr.size()-1);
|
||||
m_eivec.row(eivalr.size()-1).setZero();
|
||||
m_eivec(n-1,n-1) = 1.0;
|
||||
m_eivali[0] = 0.0;
|
||||
eivali[0] = 0.0;
|
||||
}
|
||||
|
||||
|
||||
// Symmetric tridiagonal QL algorithm.
|
||||
template<typename MatrixType>
|
||||
void EigenSolver<MatrixType>::tql2(void)
|
||||
template<typename MatrixType, bool IsSelfadjoint>
|
||||
void EigenSolver<MatrixType,IsSelfadjoint>::tql2(RealVectorType& eivalr, RealVectorType& eivali)
|
||||
{
|
||||
// This is derived from the Algol procedures tql2, by
|
||||
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
||||
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
||||
// Fortran subroutine in EISPACK.
|
||||
|
||||
// This is derived from the Algol procedures tql2, by
|
||||
// Bowdler, Martin, Reinsch, and Wilkinson, Handbook for
|
||||
// Auto. Comp., Vol.ii-Linear Algebra, and the corresponding
|
||||
// Fortran subroutine in EISPACK.
|
||||
|
||||
int n = m_eivalr.size();
|
||||
int n = eivalr.size();
|
||||
|
||||
for (int i = 1; i < n; i++) {
|
||||
m_eivali[i-1] = m_eivali[i];
|
||||
eivali[i-1] = eivali[i];
|
||||
}
|
||||
m_eivali[n-1] = 0.0;
|
||||
eivali[n-1] = 0.0;
|
||||
|
||||
Scalar f = 0.0;
|
||||
Scalar tst1 = 0.0;
|
||||
@ -230,13 +252,13 @@ void EigenSolver<MatrixType>::tql2(void)
|
||||
for (int l = 0; l < n; l++)
|
||||
{
|
||||
// Find small subdiagonal element
|
||||
tst1 = std::max(tst1,ei_abs(m_eivalr[l]) + ei_abs(m_eivali[l]));
|
||||
tst1 = std::max(tst1,ei_abs(eivalr[l]) + ei_abs(eivali[l]));
|
||||
int m = l;
|
||||
|
||||
while ( (m < n) && (ei_abs(m_eivali[m]) > eps*tst1) )
|
||||
while ( (m < n) && (ei_abs(eivali[m]) > eps*tst1) )
|
||||
m++;
|
||||
|
||||
// If m == l, m_eivalr[l] is an eigenvalue,
|
||||
// If m == l, eivalr[l] is an eigenvalue,
|
||||
// otherwise, iterate.
|
||||
if (m > l)
|
||||
{
|
||||
@ -246,26 +268,26 @@ void EigenSolver<MatrixType>::tql2(void)
|
||||
iter = iter + 1;
|
||||
|
||||
// Compute implicit shift
|
||||
Scalar g = m_eivalr[l];
|
||||
Scalar p = (m_eivalr[l+1] - g) / (2.0 * m_eivali[l]);
|
||||
Scalar g = eivalr[l];
|
||||
Scalar p = (eivalr[l+1] - g) / (2.0 * eivali[l]);
|
||||
Scalar r = hypot(p,1.0);
|
||||
if (p < 0)
|
||||
r = -r;
|
||||
|
||||
m_eivalr[l] = m_eivali[l] / (p + r);
|
||||
m_eivalr[l+1] = m_eivali[l] * (p + r);
|
||||
Scalar dl1 = m_eivalr[l+1];
|
||||
Scalar h = g - m_eivalr[l];
|
||||
eivalr[l] = eivali[l] / (p + r);
|
||||
eivalr[l+1] = eivali[l] * (p + r);
|
||||
Scalar dl1 = eivalr[l+1];
|
||||
Scalar h = g - eivalr[l];
|
||||
if (l+2<n)
|
||||
m_eivalr.end(n-l-2) -= VectorType::constant(n-l-2, h);
|
||||
eivalr.end(n-l-2) -= RealVectorType::constant(n-l-2, h);
|
||||
f = f + h;
|
||||
|
||||
// Implicit QL transformation.
|
||||
p = m_eivalr[m];
|
||||
p = eivalr[m];
|
||||
Scalar c = 1.0;
|
||||
Scalar c2 = c;
|
||||
Scalar c3 = c;
|
||||
Scalar el1 = m_eivali[l+1];
|
||||
Scalar el1 = eivali[l+1];
|
||||
Scalar s = 0.0;
|
||||
Scalar s2 = 0.0;
|
||||
for (int i = m-1; i >= l; i--)
|
||||
@ -273,14 +295,14 @@ void EigenSolver<MatrixType>::tql2(void)
|
||||
c3 = c2;
|
||||
c2 = c;
|
||||
s2 = s;
|
||||
g = c * m_eivali[i];
|
||||
g = c * eivali[i];
|
||||
h = c * p;
|
||||
r = hypot(p,m_eivali[i]);
|
||||
m_eivali[i+1] = s * r;
|
||||
s = m_eivali[i] / r;
|
||||
r = hypot(p,eivali[i]);
|
||||
eivali[i+1] = s * r;
|
||||
s = eivali[i] / r;
|
||||
c = p / r;
|
||||
p = c * m_eivalr[i] - s * g;
|
||||
m_eivalr[i+1] = h + s * (c * g + s * m_eivalr[i]);
|
||||
p = c * eivalr[i] - s * g;
|
||||
eivalr[i+1] = h + s * (c * g + s * eivalr[i]);
|
||||
|
||||
// Accumulate transformation.
|
||||
for (int k = 0; k < n; k++)
|
||||
@ -290,15 +312,15 @@ void EigenSolver<MatrixType>::tql2(void)
|
||||
m_eivec(k,i) = c * m_eivec(k,i) - s * h;
|
||||
}
|
||||
}
|
||||
p = -s * s2 * c3 * el1 * m_eivali[l] / dl1;
|
||||
m_eivali[l] = s * p;
|
||||
m_eivalr[l] = c * p;
|
||||
p = -s * s2 * c3 * el1 * eivali[l] / dl1;
|
||||
eivali[l] = s * p;
|
||||
eivalr[l] = c * p;
|
||||
|
||||
// Check for convergence.
|
||||
} while (ei_abs(m_eivali[l]) > eps*tst1);
|
||||
} while (ei_abs(eivali[l]) > eps*tst1);
|
||||
}
|
||||
m_eivalr[l] = m_eivalr[l] + f;
|
||||
m_eivali[l] = 0.0;
|
||||
eivalr[l] = eivalr[l] + f;
|
||||
eivali[l] = 0.0;
|
||||
}
|
||||
|
||||
// Sort eigenvalues and corresponding vectors.
|
||||
@ -306,18 +328,18 @@ void EigenSolver<MatrixType>::tql2(void)
|
||||
for (int i = 0; i < n-1; i++)
|
||||
{
|
||||
int k = i;
|
||||
Scalar minValue = m_eivalr[i];
|
||||
Scalar minValue = eivalr[i];
|
||||
for (int j = i+1; j < n; j++)
|
||||
{
|
||||
if (m_eivalr[j] < minValue)
|
||||
if (eivalr[j] < minValue)
|
||||
{
|
||||
k = j;
|
||||
minValue = m_eivalr[j];
|
||||
minValue = eivalr[j];
|
||||
}
|
||||
}
|
||||
if (k != i)
|
||||
{
|
||||
std::swap(m_eivalr[i], m_eivalr[k]);
|
||||
std::swap(eivalr[i], eivalr[k]);
|
||||
m_eivec.col(i).swap(m_eivec.col(k));
|
||||
}
|
||||
}
|
||||
@ -325,8 +347,8 @@ void EigenSolver<MatrixType>::tql2(void)
|
||||
|
||||
|
||||
// Nonsymmetric reduction to Hessenberg form.
|
||||
template<typename MatrixType>
|
||||
void EigenSolver<MatrixType>::orthes(void)
|
||||
template<typename MatrixType, bool IsSelfadjoint>
|
||||
void EigenSolver<MatrixType,IsSelfadjoint>::orthes(MatrixType& matH, RealVectorType& ort)
|
||||
{
|
||||
// This is derived from the Algol procedures orthes and ortran,
|
||||
// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
||||
@ -340,7 +362,7 @@ void EigenSolver<MatrixType>::orthes(void)
|
||||
for (int m = low+1; m <= high-1; m++)
|
||||
{
|
||||
// Scale column.
|
||||
Scalar scale = m_H.block(m, m-1, high-m+1, 1).cwiseAbs().sum();
|
||||
Scalar scale = matH.block(m, m-1, high-m+1, 1).cwiseAbs().sum();
|
||||
if (scale != 0.0)
|
||||
{
|
||||
// Compute Householder transformation.
|
||||
@ -348,26 +370,26 @@ void EigenSolver<MatrixType>::orthes(void)
|
||||
// FIXME could be rewritten, but this one looks better wrt cache
|
||||
for (int i = high; i >= m; i--)
|
||||
{
|
||||
m_ort[i] = m_H(i,m-1)/scale;
|
||||
h += m_ort[i] * m_ort[i];
|
||||
ort[i] = matH(i,m-1)/scale;
|
||||
h += ort[i] * ort[i];
|
||||
}
|
||||
Scalar g = ei_sqrt(h);
|
||||
if (m_ort[m] > 0)
|
||||
if (ort[m] > 0)
|
||||
g = -g;
|
||||
h = h - m_ort[m] * g;
|
||||
m_ort[m] = m_ort[m] - g;
|
||||
h = h - ort[m] * g;
|
||||
ort[m] = ort[m] - g;
|
||||
|
||||
// Apply Householder similarity transformation
|
||||
// H = (I-u*u'/h)*H*(I-u*u')/h)
|
||||
int bSize = high-m+1;
|
||||
m_H.block(m, m, bSize, n-m) -= ((m_ort.block(m, bSize)/h)
|
||||
* (m_ort.block(m, bSize).transpose() * m_H.block(m, m, bSize, n-m)).lazy()).lazy();
|
||||
matH.block(m, m, bSize, n-m) -= ((ort.block(m, bSize)/h)
|
||||
* (ort.block(m, bSize).transpose() * matH.block(m, m, bSize, n-m)).lazy()).lazy();
|
||||
|
||||
m_H.block(0, m, high+1, bSize) -= ((m_H.block(0, m, high+1, bSize) * m_ort.block(m, bSize)).lazy()
|
||||
* (m_ort.block(m, bSize)/h).transpose()).lazy();
|
||||
matH.block(0, m, high+1, bSize) -= ((matH.block(0, m, high+1, bSize) * ort.block(m, bSize)).lazy()
|
||||
* (ort.block(m, bSize)/h).transpose()).lazy();
|
||||
|
||||
m_ort[m] = scale*m_ort[m];
|
||||
m_H(m,m-1) = scale*g;
|
||||
ort[m] = scale*ort[m];
|
||||
matH(m,m-1) = scale*g;
|
||||
}
|
||||
}
|
||||
|
||||
@ -376,13 +398,13 @@ void EigenSolver<MatrixType>::orthes(void)
|
||||
|
||||
for (int m = high-1; m >= low+1; m--)
|
||||
{
|
||||
if (m_H(m,m-1) != 0.0)
|
||||
if (matH(m,m-1) != 0.0)
|
||||
{
|
||||
m_ort.block(m+1, high-m) = m_H.col(m-1).block(m+1, high-m);
|
||||
ort.block(m+1, high-m) = matH.col(m-1).block(m+1, high-m);
|
||||
|
||||
int bSize = high-m+1;
|
||||
m_eivec.block(m, m, bSize, bSize) += ( (m_ort.block(m, bSize) / (m_H(m,m-1) * m_ort[m] ) )
|
||||
* (m_ort.block(m, bSize).transpose() * m_eivec.block(m, m, bSize, bSize)).lazy());
|
||||
m_eivec.block(m, m, bSize, bSize) += ( (ort.block(m, bSize) / (matH(m,m-1) * ort[m] ) )
|
||||
* (ort.block(m, bSize).transpose() * m_eivec.block(m, m, bSize, bSize)).lazy());
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -409,8 +431,8 @@ std::complex<Scalar> cdiv(Scalar xr, Scalar xi, Scalar yr, Scalar yi)
|
||||
|
||||
|
||||
// Nonsymmetric reduction from Hessenberg to real Schur form.
|
||||
template<typename MatrixType>
|
||||
void EigenSolver<MatrixType>::hqr2(void)
|
||||
template<typename MatrixType, bool IsSelfadjoint>
|
||||
void EigenSolver<MatrixType,IsSelfadjoint>::hqr2(MatrixType& matH, RealVectorType& ort)
|
||||
{
|
||||
// This is derived from the Algol procedure hqr2,
|
||||
// by Martin and Wilkinson, Handbook for Auto. Comp.,
|
||||
@ -428,17 +450,17 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
|
||||
// Store roots isolated by balanc and compute matrix norm
|
||||
// FIXME to be efficient the following would requires a triangular reduxion code
|
||||
// Scalar norm = m_H.upper().cwiseAbs().sum() + m_H.corner(BottomLeft,n,n).diagonal().cwiseAbs().sum();
|
||||
// Scalar norm = matH.upper().cwiseAbs().sum() + matH.corner(BottomLeft,n,n).diagonal().cwiseAbs().sum();
|
||||
Scalar norm = 0.0;
|
||||
for (int j = 0; j < nn; j++)
|
||||
{
|
||||
// FIXME what's the purpose of the following since the condition is always false
|
||||
if ((j < low) || (j > high))
|
||||
{
|
||||
m_eivalr[j] = m_H(j,j);
|
||||
m_eivali[j] = 0.0;
|
||||
m_eivalues[j].real() = matH(j,j);
|
||||
m_eivalues[j].imag() = 0.0;
|
||||
}
|
||||
norm += m_H.col(j).start(std::min(j+1,nn)).cwiseAbs().sum();
|
||||
norm += matH.col(j).start(std::min(j+1,nn)).cwiseAbs().sum();
|
||||
}
|
||||
|
||||
// Outer loop over eigenvalue index
|
||||
@ -449,10 +471,10 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
int l = n;
|
||||
while (l > low)
|
||||
{
|
||||
s = ei_abs(m_H(l-1,l-1)) + ei_abs(m_H(l,l));
|
||||
s = ei_abs(matH(l-1,l-1)) + ei_abs(matH(l,l));
|
||||
if (s == 0.0)
|
||||
s = norm;
|
||||
if (ei_abs(m_H(l,l-1)) < eps * s)
|
||||
if (ei_abs(matH(l,l-1)) < eps * s)
|
||||
break;
|
||||
l--;
|
||||
}
|
||||
@ -461,21 +483,21 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
// One root found
|
||||
if (l == n)
|
||||
{
|
||||
m_H(n,n) = m_H(n,n) + exshift;
|
||||
m_eivalr[n] = m_H(n,n);
|
||||
m_eivali[n] = 0.0;
|
||||
matH(n,n) = matH(n,n) + exshift;
|
||||
m_eivalues[n].real() = matH(n,n);
|
||||
m_eivalues[n].imag() = 0.0;
|
||||
n--;
|
||||
iter = 0;
|
||||
}
|
||||
else if (l == n-1) // Two roots found
|
||||
{
|
||||
w = m_H(n,n-1) * m_H(n-1,n);
|
||||
p = (m_H(n-1,n-1) - m_H(n,n)) / 2.0;
|
||||
w = matH(n,n-1) * matH(n-1,n);
|
||||
p = (matH(n-1,n-1) - matH(n,n)) / 2.0;
|
||||
q = p * p + w;
|
||||
z = ei_sqrt(ei_abs(q));
|
||||
m_H(n,n) = m_H(n,n) + exshift;
|
||||
m_H(n-1,n-1) = m_H(n-1,n-1) + exshift;
|
||||
x = m_H(n,n);
|
||||
matH(n,n) = matH(n,n) + exshift;
|
||||
matH(n-1,n-1) = matH(n-1,n-1) + exshift;
|
||||
x = matH(n,n);
|
||||
|
||||
// Scalar pair
|
||||
if (q >= 0)
|
||||
@ -485,14 +507,14 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
else
|
||||
z = p - z;
|
||||
|
||||
m_eivalr[n-1] = x + z;
|
||||
m_eivalr[n] = m_eivalr[n-1];
|
||||
m_eivalues[n-1].real() = x + z;
|
||||
m_eivalues[n].real() = m_eivalues[n-1].real();
|
||||
if (z != 0.0)
|
||||
m_eivalr[n] = x - w / z;
|
||||
m_eivalues[n].real() = x - w / z;
|
||||
|
||||
m_eivali[n-1] = 0.0;
|
||||
m_eivali[n] = 0.0;
|
||||
x = m_H(n,n-1);
|
||||
m_eivalues[n-1].imag() = 0.0;
|
||||
m_eivalues[n].imag() = 0.0;
|
||||
x = matH(n,n-1);
|
||||
s = ei_abs(x) + ei_abs(z);
|
||||
p = x / s;
|
||||
q = z / s;
|
||||
@ -503,17 +525,17 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
// Row modification
|
||||
for (int j = n-1; j < nn; j++)
|
||||
{
|
||||
z = m_H(n-1,j);
|
||||
m_H(n-1,j) = q * z + p * m_H(n,j);
|
||||
m_H(n,j) = q * m_H(n,j) - p * z;
|
||||
z = matH(n-1,j);
|
||||
matH(n-1,j) = q * z + p * matH(n,j);
|
||||
matH(n,j) = q * matH(n,j) - p * z;
|
||||
}
|
||||
|
||||
// Column modification
|
||||
for (int i = 0; i <= n; i++)
|
||||
{
|
||||
z = m_H(i,n-1);
|
||||
m_H(i,n-1) = q * z + p * m_H(i,n);
|
||||
m_H(i,n) = q * m_H(i,n) - p * z;
|
||||
z = matH(i,n-1);
|
||||
matH(i,n-1) = q * z + p * matH(i,n);
|
||||
matH(i,n) = q * matH(i,n) - p * z;
|
||||
}
|
||||
|
||||
// Accumulate transformations
|
||||
@ -526,10 +548,10 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
}
|
||||
else // Complex pair
|
||||
{
|
||||
m_eivalr[n-1] = x + p;
|
||||
m_eivalr[n] = x + p;
|
||||
m_eivali[n-1] = z;
|
||||
m_eivali[n] = -z;
|
||||
m_eivalues[n-1].real() = x + p;
|
||||
m_eivalues[n].real() = x + p;
|
||||
m_eivalues[n-1].imag() = z;
|
||||
m_eivalues[n].imag() = -z;
|
||||
}
|
||||
n = n - 2;
|
||||
iter = 0;
|
||||
@ -537,13 +559,13 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
else // No convergence yet
|
||||
{
|
||||
// Form shift
|
||||
x = m_H(n,n);
|
||||
x = matH(n,n);
|
||||
y = 0.0;
|
||||
w = 0.0;
|
||||
if (l < n)
|
||||
{
|
||||
y = m_H(n-1,n-1);
|
||||
w = m_H(n,n-1) * m_H(n-1,n);
|
||||
y = matH(n-1,n-1);
|
||||
w = matH(n,n-1) * matH(n-1,n);
|
||||
}
|
||||
|
||||
// Wilkinson's original ad hoc shift
|
||||
@ -551,8 +573,8 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
{
|
||||
exshift += x;
|
||||
for (int i = low; i <= n; i++)
|
||||
m_H(i,i) -= x;
|
||||
s = ei_abs(m_H(n,n-1)) + ei_abs(m_H(n-1,n-2));
|
||||
matH(i,i) -= x;
|
||||
s = ei_abs(matH(n,n-1)) + ei_abs(matH(n-1,n-2));
|
||||
x = y = 0.75 * s;
|
||||
w = -0.4375 * s * s;
|
||||
}
|
||||
@ -569,7 +591,7 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
s = -s;
|
||||
s = x - w / ((y - x) / 2.0 + s);
|
||||
for (int i = low; i <= n; i++)
|
||||
m_H(i,i) -= s;
|
||||
matH(i,i) -= s;
|
||||
exshift += s;
|
||||
x = y = w = 0.964;
|
||||
}
|
||||
@ -581,12 +603,12 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
int m = n-2;
|
||||
while (m >= l)
|
||||
{
|
||||
z = m_H(m,m);
|
||||
z = matH(m,m);
|
||||
r = x - z;
|
||||
s = y - z;
|
||||
p = (r * s - w) / m_H(m+1,m) + m_H(m,m+1);
|
||||
q = m_H(m+1,m+1) - z - r - s;
|
||||
r = m_H(m+2,m+1);
|
||||
p = (r * s - w) / matH(m+1,m) + matH(m,m+1);
|
||||
q = matH(m+1,m+1) - z - r - s;
|
||||
r = matH(m+2,m+1);
|
||||
s = ei_abs(p) + ei_abs(q) + ei_abs(r);
|
||||
p = p / s;
|
||||
q = q / s;
|
||||
@ -594,9 +616,9 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
if (m == l) {
|
||||
break;
|
||||
}
|
||||
if (ei_abs(m_H(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
|
||||
eps * (ei_abs(p) * (ei_abs(m_H(m-1,m-1)) + ei_abs(z) +
|
||||
ei_abs(m_H(m+1,m+1)))))
|
||||
if (ei_abs(matH(m,m-1)) * (ei_abs(q) + ei_abs(r)) <
|
||||
eps * (ei_abs(p) * (ei_abs(matH(m-1,m-1)) + ei_abs(z) +
|
||||
ei_abs(matH(m+1,m+1)))))
|
||||
{
|
||||
break;
|
||||
}
|
||||
@ -605,9 +627,9 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
|
||||
for (int i = m+2; i <= n; i++)
|
||||
{
|
||||
m_H(i,i-2) = 0.0;
|
||||
matH(i,i-2) = 0.0;
|
||||
if (i > m+2)
|
||||
m_H(i,i-3) = 0.0;
|
||||
matH(i,i-3) = 0.0;
|
||||
}
|
||||
|
||||
// Double QR step involving rows l:n and columns m:n
|
||||
@ -615,9 +637,9 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
{
|
||||
int notlast = (k != n-1);
|
||||
if (k != m) {
|
||||
p = m_H(k,k-1);
|
||||
q = m_H(k+1,k-1);
|
||||
r = (notlast ? m_H(k+2,k-1) : 0.0);
|
||||
p = matH(k,k-1);
|
||||
q = matH(k+1,k-1);
|
||||
r = (notlast ? matH(k+2,k-1) : 0.0);
|
||||
x = ei_abs(p) + ei_abs(q) + ei_abs(r);
|
||||
if (x != 0.0)
|
||||
{
|
||||
@ -638,9 +660,9 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
if (s != 0)
|
||||
{
|
||||
if (k != m)
|
||||
m_H(k,k-1) = -s * x;
|
||||
matH(k,k-1) = -s * x;
|
||||
else if (l != m)
|
||||
m_H(k,k-1) = -m_H(k,k-1);
|
||||
matH(k,k-1) = -matH(k,k-1);
|
||||
|
||||
p = p + s;
|
||||
x = p / s;
|
||||
@ -652,27 +674,27 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
// Row modification
|
||||
for (int j = k; j < nn; j++)
|
||||
{
|
||||
p = m_H(k,j) + q * m_H(k+1,j);
|
||||
p = matH(k,j) + q * matH(k+1,j);
|
||||
if (notlast)
|
||||
{
|
||||
p = p + r * m_H(k+2,j);
|
||||
m_H(k+2,j) = m_H(k+2,j) - p * z;
|
||||
p = p + r * matH(k+2,j);
|
||||
matH(k+2,j) = matH(k+2,j) - p * z;
|
||||
}
|
||||
m_H(k,j) = m_H(k,j) - p * x;
|
||||
m_H(k+1,j) = m_H(k+1,j) - p * y;
|
||||
matH(k,j) = matH(k,j) - p * x;
|
||||
matH(k+1,j) = matH(k+1,j) - p * y;
|
||||
}
|
||||
|
||||
// Column modification
|
||||
for (int i = 0; i <= std::min(n,k+3); i++)
|
||||
{
|
||||
p = x * m_H(i,k) + y * m_H(i,k+1);
|
||||
p = x * matH(i,k) + y * matH(i,k+1);
|
||||
if (notlast)
|
||||
{
|
||||
p = p + z * m_H(i,k+2);
|
||||
m_H(i,k+2) = m_H(i,k+2) - p * r;
|
||||
p = p + z * matH(i,k+2);
|
||||
matH(i,k+2) = matH(i,k+2) - p * r;
|
||||
}
|
||||
m_H(i,k) = m_H(i,k) - p;
|
||||
m_H(i,k+1) = m_H(i,k+1) - p * q;
|
||||
matH(i,k) = matH(i,k) - p;
|
||||
matH(i,k+1) = matH(i,k+1) - p * q;
|
||||
}
|
||||
|
||||
// Accumulate transformations
|
||||
@ -700,20 +722,20 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
|
||||
for (n = nn-1; n >= 0; n--)
|
||||
{
|
||||
p = m_eivalr[n];
|
||||
q = m_eivali[n];
|
||||
p = m_eivalues[n].real();
|
||||
q = m_eivalues[n].imag();
|
||||
|
||||
// Scalar vector
|
||||
if (q == 0)
|
||||
{
|
||||
int l = n;
|
||||
m_H(n,n) = 1.0;
|
||||
matH(n,n) = 1.0;
|
||||
for (int i = n-1; i >= 0; i--)
|
||||
{
|
||||
w = m_H(i,i) - p;
|
||||
r = (m_H.row(i).end(nn-l) * m_H.col(n).end(nn-l))(0,0);
|
||||
w = matH(i,i) - p;
|
||||
r = (matH.row(i).end(nn-l) * matH.col(n).end(nn-l))(0,0);
|
||||
|
||||
if (m_eivali[i] < 0.0)
|
||||
if (m_eivalues[i].imag() < 0.0)
|
||||
{
|
||||
z = w;
|
||||
s = r;
|
||||
@ -721,30 +743,30 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
else
|
||||
{
|
||||
l = i;
|
||||
if (m_eivali[i] == 0.0)
|
||||
if (m_eivalues[i].imag() == 0.0)
|
||||
{
|
||||
if (w != 0.0)
|
||||
m_H(i,n) = -r / w;
|
||||
matH(i,n) = -r / w;
|
||||
else
|
||||
m_H(i,n) = -r / (eps * norm);
|
||||
matH(i,n) = -r / (eps * norm);
|
||||
}
|
||||
else // Solve real equations
|
||||
{
|
||||
x = m_H(i,i+1);
|
||||
y = m_H(i+1,i);
|
||||
q = (m_eivalr[i] - p) * (m_eivalr[i] - p) + m_eivali[i] * m_eivali[i];
|
||||
x = matH(i,i+1);
|
||||
y = matH(i+1,i);
|
||||
q = (m_eivalues[i].real() - p) * (m_eivalues[i].real() - p) + m_eivalues[i].imag() * m_eivalues[i].imag();
|
||||
t = (x * s - z * r) / q;
|
||||
m_H(i,n) = t;
|
||||
matH(i,n) = t;
|
||||
if (ei_abs(x) > ei_abs(z))
|
||||
m_H(i+1,n) = (-r - w * t) / x;
|
||||
matH(i+1,n) = (-r - w * t) / x;
|
||||
else
|
||||
m_H(i+1,n) = (-s - y * t) / z;
|
||||
matH(i+1,n) = (-s - y * t) / z;
|
||||
}
|
||||
|
||||
// Overflow control
|
||||
t = ei_abs(m_H(i,n));
|
||||
t = ei_abs(matH(i,n));
|
||||
if ((eps * t) * t > 1)
|
||||
m_H.col(n).end(nn-i) /= t;
|
||||
matH.col(n).end(nn-i) /= t;
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -754,27 +776,27 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
int l = n-1;
|
||||
|
||||
// Last vector component imaginary so matrix is triangular
|
||||
if (ei_abs(m_H(n,n-1)) > ei_abs(m_H(n-1,n)))
|
||||
if (ei_abs(matH(n,n-1)) > ei_abs(matH(n-1,n)))
|
||||
{
|
||||
m_H(n-1,n-1) = q / m_H(n,n-1);
|
||||
m_H(n-1,n) = -(m_H(n,n) - p) / m_H(n,n-1);
|
||||
matH(n-1,n-1) = q / matH(n,n-1);
|
||||
matH(n-1,n) = -(matH(n,n) - p) / matH(n,n-1);
|
||||
}
|
||||
else
|
||||
{
|
||||
cc = cdiv<Scalar>(0.0,-m_H(n-1,n),m_H(n-1,n-1)-p,q);
|
||||
m_H(n-1,n-1) = ei_real(cc);
|
||||
m_H(n-1,n) = ei_imag(cc);
|
||||
cc = cdiv<Scalar>(0.0,-matH(n-1,n),matH(n-1,n-1)-p,q);
|
||||
matH(n-1,n-1) = ei_real(cc);
|
||||
matH(n-1,n) = ei_imag(cc);
|
||||
}
|
||||
m_H(n,n-1) = 0.0;
|
||||
m_H(n,n) = 1.0;
|
||||
matH(n,n-1) = 0.0;
|
||||
matH(n,n) = 1.0;
|
||||
for (int i = n-2; i >= 0; i--)
|
||||
{
|
||||
Scalar ra,sa,vr,vi;
|
||||
ra = (m_H.row(i).end(nn-l) * m_H.col(n-1).end(nn-l)).lazy()(0,0);
|
||||
sa = (m_H.row(i).end(nn-l) * m_H.col(n).end(nn-l)).lazy()(0,0);
|
||||
w = m_H(i,i) - p;
|
||||
ra = (matH.row(i).end(nn-l) * matH.col(n-1).end(nn-l)).lazy()(0,0);
|
||||
sa = (matH.row(i).end(nn-l) * matH.col(n).end(nn-l)).lazy()(0,0);
|
||||
w = matH(i,i) - p;
|
||||
|
||||
if (m_eivali[i] < 0.0)
|
||||
if (m_eivalues[i].imag() < 0.0)
|
||||
{
|
||||
z = w;
|
||||
r = ra;
|
||||
@ -783,42 +805,42 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
else
|
||||
{
|
||||
l = i;
|
||||
if (m_eivali[i] == 0)
|
||||
if (m_eivalues[i].imag() == 0)
|
||||
{
|
||||
cc = cdiv(-ra,-sa,w,q);
|
||||
m_H(i,n-1) = ei_real(cc);
|
||||
m_H(i,n) = ei_imag(cc);
|
||||
matH(i,n-1) = ei_real(cc);
|
||||
matH(i,n) = ei_imag(cc);
|
||||
}
|
||||
else
|
||||
{
|
||||
// Solve complex equations
|
||||
x = m_H(i,i+1);
|
||||
y = m_H(i+1,i);
|
||||
vr = (m_eivalr[i] - p) * (m_eivalr[i] - p) + m_eivali[i] * m_eivali[i] - q * q;
|
||||
vi = (m_eivalr[i] - p) * 2.0 * q;
|
||||
x = matH(i,i+1);
|
||||
y = matH(i+1,i);
|
||||
vr = (m_eivalues[i].real() - p) * (m_eivalues[i].real() - p) + m_eivalues[i].imag() * m_eivalues[i].imag() - q * q;
|
||||
vi = (m_eivalues[i].real() - p) * 2.0 * q;
|
||||
if ((vr == 0.0) && (vi == 0.0))
|
||||
vr = eps * norm * (ei_abs(w) + ei_abs(q) + ei_abs(x) + ei_abs(y) + ei_abs(z));
|
||||
|
||||
cc= cdiv(x*r-z*ra+q*sa,x*s-z*sa-q*ra,vr,vi);
|
||||
m_H(i,n-1) = ei_real(cc);
|
||||
m_H(i,n) = ei_imag(cc);
|
||||
matH(i,n-1) = ei_real(cc);
|
||||
matH(i,n) = ei_imag(cc);
|
||||
if (ei_abs(x) > (ei_abs(z) + ei_abs(q)))
|
||||
{
|
||||
m_H(i+1,n-1) = (-ra - w * m_H(i,n-1) + q * m_H(i,n)) / x;
|
||||
m_H(i+1,n) = (-sa - w * m_H(i,n) - q * m_H(i,n-1)) / x;
|
||||
matH(i+1,n-1) = (-ra - w * matH(i,n-1) + q * matH(i,n)) / x;
|
||||
matH(i+1,n) = (-sa - w * matH(i,n) - q * matH(i,n-1)) / x;
|
||||
}
|
||||
else
|
||||
{
|
||||
cc = cdiv(-r-y*m_H(i,n-1),-s-y*m_H(i,n),z,q);
|
||||
m_H(i+1,n-1) = ei_real(cc);
|
||||
m_H(i+1,n) = ei_imag(cc);
|
||||
cc = cdiv(-r-y*matH(i,n-1),-s-y*matH(i,n),z,q);
|
||||
matH(i+1,n-1) = ei_real(cc);
|
||||
matH(i+1,n) = ei_imag(cc);
|
||||
}
|
||||
}
|
||||
|
||||
// Overflow control
|
||||
t = std::max(ei_abs(m_H(i,n-1)),ei_abs(m_H(i,n)));
|
||||
t = std::max(ei_abs(matH(i,n-1)),ei_abs(matH(i,n)));
|
||||
if ((eps * t) * t > 1)
|
||||
m_H.block(i, n-1, nn-i, 2) /= t;
|
||||
matH.block(i, n-1, nn-i, 2) /= t;
|
||||
|
||||
}
|
||||
}
|
||||
@ -832,7 +854,7 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
// in this algo low==0 and high==nn-1 !!
|
||||
if (i < low || i > high)
|
||||
{
|
||||
m_eivec.row(i).end(nn-i) = m_H.row(i).end(nn-i);
|
||||
m_eivec.row(i).end(nn-i) = matH.row(i).end(nn-i);
|
||||
}
|
||||
}
|
||||
|
||||
@ -841,7 +863,7 @@ void EigenSolver<MatrixType>::hqr2(void)
|
||||
for (int j = nn-1; j >= low; j--)
|
||||
{
|
||||
int bSize = std::min(j,high)-low+1;
|
||||
m_eivec.col(j).block(low, bRows) = (m_eivec.block(low, low, bRows, bSize) * m_H.col(j).block(low, bSize));
|
||||
m_eivec.col(j).block(low, bRows) = (m_eivec.block(low, low, bRows, bSize) * matH.col(j).block(low, bSize));
|
||||
}
|
||||
}
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user