split level 1 and 2 implementation files into smaller ones and fix a couple of numerical and tricky issues discovered by the lapack test suite

This commit is contained in:
Gael Guennebaud 2010-11-22 18:49:12 +01:00
parent a6f483e86b
commit f5f288b741
12 changed files with 874 additions and 715 deletions

View File

@ -133,7 +133,7 @@ T* get_compact_vector(T* x, int n, int incx)
{
if(incx==1)
return x;
T* ret = new Scalar[n];
if(incx<0) vector(ret,n) = vector(x,n,-incx).reverse();
else vector(ret,n) = vector(x,n, incx);
@ -145,7 +145,7 @@ T* copy_back(T* x_cpy, T* x, int n, int incx)
{
if(x_cpy==x)
return 0;
if(incx<0) vector(x,n,-incx).reverse() = vector(x_cpy,n);
else vector(x,n, incx) = vector(x_cpy,n);
return x_cpy;

View File

@ -29,5 +29,7 @@
#define ISCOMPLEX 1
#include "level1_impl.h"
#include "level1_cplx_impl.h"
#include "level2_impl.h"
#include "level2_cplx_impl.h"
#include "level3_impl.h"

View File

@ -29,5 +29,7 @@
#define ISCOMPLEX 1
#include "level1_impl.h"
#include "level1_cplx_impl.h"
#include "level2_impl.h"
#include "level2_cplx_impl.h"
#include "level3_impl.h"

View File

@ -28,5 +28,7 @@
#define ISCOMPLEX 0
#include "level1_impl.h"
#include "level1_real_impl.h"
#include "level2_impl.h"
#include "level2_real_impl.h"
#include "level3_impl.h"

141
blas/level1_cplx_impl.h Normal file
View File

@ -0,0 +1,141 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "common.h"
struct scalar_norm1_op {
typedef RealScalar result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op)
inline RealScalar operator() (const Scalar& a) const { return internal::norm1(a); }
};
namespace Eigen {
namespace internal {
template<> struct functor_traits<scalar_norm1_op >
{
enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
};
}
}
// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx)
{
// std::cerr << "__asum " << *n << " " << *incx << "\n";
Complex* x = reinterpret_cast<Complex*>(px);
if(*n<=0) return 0;
if(*incx==1) return vector(x,*n).unaryExpr<scalar_norm1_op>().sum();
else return vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
}
// computes a dot product of a conjugated vector with another vector.
Scalar EIGEN_BLAS_FUNC(dotc)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
// std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar res;
if(*incx==1 && *incy==1) res = (vector(x,*n).dot(vector(y,*n)));
else if(*incx>0 && *incy>0) res = (vector(x,*n,*incx).dot(vector(y,*n,*incy)));
else if(*incx<0 && *incy>0) res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,*incy)));
else if(*incx>0 && *incy<0) res = (vector(x,*n,*incx).dot(vector(y,*n,-*incy).reverse()));
else if(*incx<0 && *incy<0) res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,-*incy).reverse()));
return res;
}
// computes a vector-vector dot product without complex conjugation.
Scalar EIGEN_BLAS_FUNC(dotu)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
// std::cerr << "_dotu " << *n << " " << *incx << " " << *incy << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar res;
if(*incx==1 && *incy==1) res = (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
else if(*incx>0 && *incy>0) res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
else if(*incx<0 && *incy>0) res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum();
else if(*incx>0 && *incy<0) res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
else if(*incx<0 && *incy<0) res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
return res;
}
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx)
{
// std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
if(*incx==1)
return vector(x,*n).stableNorm();
return vector(x,*n,*incx).stableNorm();
}
int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),rot_)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
{
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
RealScalar c = *pc;
RealScalar s = *ps;
StridedVectorType vx(vector(x,*n,std::abs(*incx)));
StridedVectorType vy(vector(y,*n,std::abs(*incy)));
Reverse<StridedVectorType> rvx(vx);
Reverse<StridedVectorType> rvy(vy);
// TODO implement mixed real-scalar rotations
if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s));
return 0;
}
int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
{
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
RealScalar alpha = *palpha;
// std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
if(*incx==1) vector(x,*n) *= alpha;
else vector(x,*n,std::abs(*incx)) *= alpha;
return 0;
}

View File

@ -41,209 +41,51 @@ int EIGEN_BLAS_FUNC(axpy)(int *n, RealScalar *palpha, RealScalar *px, int *incx,
return 0;
}
#if !ISCOMPLEX
// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
RealScalar EIGEN_BLAS_FUNC(asum)(int *n, RealScalar *px, int *incx)
{
// std::cerr << "_asum " << *n << " " << *incx << "\n";
Scalar* x = reinterpret_cast<Scalar*>(px);
if(*n<=0) return 0;
if(*incx==1) return vector(x,*n).cwiseAbs().sum();
else return vector(x,*n,std::abs(*incx)).cwiseAbs().sum();
}
#else
struct scalar_norm1_op {
typedef RealScalar result_type;
EIGEN_EMPTY_STRUCT_CTOR(scalar_norm1_op)
inline RealScalar operator() (const Scalar& a) const { return internal::norm1(a); }
};
namespace Eigen {
namespace internal {
template<> struct functor_traits<scalar_norm1_op >
{
enum { Cost = 3 * NumTraits<Scalar>::AddCost, PacketAccess = 0 };
};
}
}
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),asum_)(int *n, RealScalar *px, int *incx)
{
// std::cerr << "__asum " << *n << " " << *incx << "\n";
Complex* x = reinterpret_cast<Complex*>(px);
if(*n<=0) return 0;
if(*incx==1) return vector(x,*n).unaryExpr<scalar_norm1_op>().sum();
else return vector(x,*n,std::abs(*incx)).unaryExpr<scalar_norm1_op>().sum();
}
#endif
int EIGEN_BLAS_FUNC(copy)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
// std::cerr << "_copy " << *n << " " << *incx << " " << *incy << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
if(*incx==1 && *incy==1) vector(y,*n) = vector(x,*n);
else if(*incx>0 && *incy>0) vector(y,*n,*incy) = vector(x,*n,*incx);
else if(*incx>0 && *incy<0) vector(y,*n,-*incy).reverse() = vector(x,*n,*incx);
else if(*incx<0 && *incy>0) vector(y,*n,*incy) = vector(x,*n,-*incx).reverse();
else if(*incx<0 && *incy<0) vector(y,*n,-*incy).reverse() = vector(x,*n,-*incx).reverse();
// be carefull, *incx==0 is allowed !!
if(*incx==1 && *incy==1)
vector(y,*n) = vector(x,*n);
else
{
if(*incx<0) x = x - (*n-1)*(*incx);
if(*incy<0) y = y - (*n-1)*(*incy);
for(int i=0;i<*n;++i)
{
*y = *x;
x += *incx;
y += *incy;
}
}
return 0;
}
// computes a vector-vector dot product.
Scalar EIGEN_BLAS_FUNC(dot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
// std::cerr << "_dot " << *n << " " << *incx << " " << *incy << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
if(*incx==1 && *incy==1) return (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
else if(*incx>0 && *incy>0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
else if(*incx<0 && *incy>0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum();
else if(*incx>0 && *incy<0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
else if(*incx<0 && *incy<0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
else return 0;
}
int EIGEN_CAT(EIGEN_CAT(i,SCALAR_SUFFIX),amax_)(int *n, RealScalar *px, int *incx)
{
// std::cerr << "i_amax " << *n << " " << *incx << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
DenseIndex ret;
if(*incx==1) vector(x,*n).cwiseAbs().maxCoeff(&ret);
else vector(x,*n,std::abs(*incx)).cwiseAbs().maxCoeff(&ret);
return ret+1;
}
/*
// computes a vector-vector dot product with extended precision.
Scalar EIGEN_BLAS_FUNC(sdot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
int EIGEN_CAT(EIGEN_CAT(i,SCALAR_SUFFIX),amin_)(int *n, RealScalar *px, int *incx)
{
// TODO
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
if(*incx==1 && *incy==1)
return vector(x,*n).dot(vector(y,*n));
return vector(x,*n,*incx).dot(vector(y,*n,*incy));
}
*/
#if ISCOMPLEX
// computes a dot product of a conjugated vector with another vector.
Scalar EIGEN_BLAS_FUNC(dotc)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
// std::cerr << "_dotc " << *n << " " << *incx << " " << *incy << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar res;
if(*incx==1 && *incy==1) res = (vector(x,*n).dot(vector(y,*n)));
else if(*incx>0 && *incy>0) res = (vector(x,*n,*incx).dot(vector(y,*n,*incy)));
else if(*incx<0 && *incy>0) res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,*incy)));
else if(*incx>0 && *incy<0) res = (vector(x,*n,*incx).dot(vector(y,*n,-*incy).reverse()));
else if(*incx<0 && *incy<0) res = (vector(x,*n,-*incx).reverse().dot(vector(y,*n,-*incy).reverse()));
return res;
}
// computes a vector-vector dot product without complex conjugation.
Scalar EIGEN_BLAS_FUNC(dotu)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
// std::cerr << "_dotu " << *n << " " << *incx << " " << *incy << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar res;
if(*incx==1 && *incy==1) res = (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
else if(*incx>0 && *incy>0) res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
else if(*incx<0 && *incy>0) res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum();
else if(*incx>0 && *incy<0) res = (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
else if(*incx<0 && *incy<0) res = (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
return res;
}
#endif // ISCOMPLEX
#if !ISCOMPLEX
// computes the Euclidean norm of a vector.
Scalar EIGEN_BLAS_FUNC(nrm2)(int *n, RealScalar *px, int *incx)
{
// std::cerr << "_nrm2 " << *n << " " << *incx << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
if(*incx==1) return vector(x,*n).norm();
else return vector(x,*n,std::abs(*incx)).norm();
}
#else
RealScalar EIGEN_CAT(EIGEN_CAT(REAL_SCALAR_SUFFIX,SCALAR_SUFFIX),nrm2_)(int *n, RealScalar *px, int *incx)
{
// std::cerr << "__nrm2 " << *n << " " << *incx << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
if(*incx==1)
return vector(x,*n).norm();
return vector(x,*n,*incx).norm();
}
#endif
int EIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
{
// std::cerr << "_rot " << *n << " " << *incx << " " << *incy << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar c = *reinterpret_cast<Scalar*>(pc);
Scalar s = *reinterpret_cast<Scalar*>(ps);
StridedVectorType vx(vector(x,*n,std::abs(*incx)));
StridedVectorType vy(vector(y,*n,std::abs(*incy)));
Reverse<StridedVectorType> rvx(vx);
Reverse<StridedVectorType> rvy(vy);
if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s));
return 0;
DenseIndex ret;
if(*incx==1) vector(x,*n).cwiseAbs().minCoeff(&ret);
else vector(x,*n,std::abs(*incx)).cwiseAbs().minCoeff(&ret);
return ret+1;
}
int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealScalar *ps)
@ -306,29 +148,6 @@ int EIGEN_BLAS_FUNC(rotg)(RealScalar *pa, RealScalar *pb, RealScalar *pc, RealSc
return 0;
}
#if !ISCOMPLEX
/*
// performs rotation of points in the modified plane.
int EIGEN_BLAS_FUNC(rotm)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *param)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
// TODO
return 0;
}
// computes the modified parameters for a Givens rotation.
int EIGEN_BLAS_FUNC(rotmg)(RealScalar *d1, RealScalar *d2, RealScalar *x1, RealScalar *x2, RealScalar *param)
{
// TODO
return 0;
}
*/
#endif // !ISCOMPLEX
int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
{
if(*n<=0) return 0;
@ -336,35 +155,14 @@ int EIGEN_BLAS_FUNC(scal)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
// std::cerr << "_scal " << *n << " " << alpha << " " << *incx << "\n";
if(*incx==1) vector(x,*n) *= alpha;
else vector(x,*n,std::abs(*incx)) *= alpha;
return 0;
}
#if ISCOMPLEX
int EIGEN_CAT(EIGEN_CAT(SCALAR_SUFFIX,REAL_SCALAR_SUFFIX),scal_)(int *n, RealScalar *palpha, RealScalar *px, int *incx)
{
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
RealScalar alpha = *palpha;
// std::cerr << "__scal " << *n << " " << alpha << " " << *incx << "\n";
if(*incx==1) vector(x,*n) *= alpha;
else vector(x,*n,std::abs(*incx)) *= alpha;
return 0;
}
#endif // ISCOMPLEX
int EIGEN_BLAS_FUNC(swap)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
// std::cerr << "_swap " << *n << " " << *incx << " " << *incy << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);

115
blas/level1_real_impl.h Normal file
View File

@ -0,0 +1,115 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "common.h"
// computes the sum of magnitudes of all vector elements or, for a complex vector x, the sum
// res = |Rex1| + |Imx1| + |Rex2| + |Imx2| + ... + |Rexn| + |Imxn|, where x is a vector of order n
RealScalar EIGEN_BLAS_FUNC(asum)(int *n, RealScalar *px, int *incx)
{
// std::cerr << "_asum " << *n << " " << *incx << "\n";
Scalar* x = reinterpret_cast<Scalar*>(px);
if(*n<=0) return 0;
if(*incx==1) return vector(x,*n).cwiseAbs().sum();
else return vector(x,*n,std::abs(*incx)).cwiseAbs().sum();
}
// computes a vector-vector dot product.
Scalar EIGEN_BLAS_FUNC(dot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy)
{
// std::cerr << "_dot " << *n << " " << *incx << " " << *incy << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
if(*incx==1 && *incy==1) return (vector(x,*n).cwiseProduct(vector(y,*n))).sum();
else if(*incx>0 && *incy>0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,*incy))).sum();
else if(*incx<0 && *incy>0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,*incy))).sum();
else if(*incx>0 && *incy<0) return (vector(x,*n,*incx).cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
else if(*incx<0 && *incy<0) return (vector(x,*n,-*incx).reverse().cwiseProduct(vector(y,*n,-*incy).reverse())).sum();
else return 0;
}
// computes the Euclidean norm of a vector.
// FIXME
Scalar EIGEN_BLAS_FUNC(nrm2)(int *n, RealScalar *px, int *incx)
{
// std::cerr << "_nrm2 " << *n << " " << *incx << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
if(*incx==1) return vector(x,*n).stableNorm();
else return vector(x,*n,std::abs(*incx)).stableNorm();
}
int EIGEN_BLAS_FUNC(rot)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, RealScalar *ps)
{
// std::cerr << "_rot " << *n << " " << *incx << " " << *incy << "\n";
if(*n<=0) return 0;
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar c = *reinterpret_cast<Scalar*>(pc);
Scalar s = *reinterpret_cast<Scalar*>(ps);
StridedVectorType vx(vector(x,*n,std::abs(*incx)));
StridedVectorType vy(vector(y,*n,std::abs(*incy)));
Reverse<StridedVectorType> rvx(vx);
Reverse<StridedVectorType> rvy(vy);
if(*incx<0 && *incy>0) internal::apply_rotation_in_the_plane(rvx, vy, JacobiRotation<Scalar>(c,s));
else if(*incx>0 && *incy<0) internal::apply_rotation_in_the_plane(vx, rvy, JacobiRotation<Scalar>(c,s));
else internal::apply_rotation_in_the_plane(vx, vy, JacobiRotation<Scalar>(c,s));
return 0;
}
/*
// performs rotation of points in the modified plane.
int EIGEN_BLAS_FUNC(rotm)(int *n, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *param)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
// TODO
return 0;
}
// computes the modified parameters for a Givens rotation.
int EIGEN_BLAS_FUNC(rotmg)(RealScalar *d1, RealScalar *d2, RealScalar *x1, RealScalar *x2, RealScalar *param)
{
// TODO
return 0;
}
*/

285
blas/level2_cplx_impl.h Normal file
View File

@ -0,0 +1,285 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "common.h"
/** ZHEMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n hermitian matrix.
*/
int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
{
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
// check arguments
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*lda<std::max(1,*n)) info = 5;
else if(*incx==0) info = 7;
else if(*incy==0) info = 10;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6);
if(*n==0)
return 1;
Scalar* actual_x = get_compact_vector(x,*n,*incx);
Scalar* actual_y = get_compact_vector(y,*n,*incy);
if(beta!=Scalar(1))
{
if(beta==Scalar(0)) vector(actual_y, *n).setZero();
else vector(actual_y, *n) *= beta;
}
if(alpha!=Scalar(0))
{
// TODO performs a direct call to the underlying implementation function
if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n));
else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n));
}
if(actual_x!=x) delete[] actual_x;
if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
return 1;
}
/** ZHBMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n hermitian band matrix, with k super-diagonals.
*/
// int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** ZHPMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n hermitian matrix, supplied in packed form.
*/
// int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** ZHPR performs the hermitian rank 1 operation
*
* A := alpha*x*conjg( x' ) + A,
*
* where alpha is a real scalar, x is an n element vector and A is an
* n by n hermitian matrix, supplied in packed form.
*/
// int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *ap)
// {
// return 1;
// }
/** ZHPR2 performs the hermitian rank 2 operation
*
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an
* n by n hermitian matrix, supplied in packed form.
*/
// int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap)
// {
// return 1;
// }
/** ZHER performs the hermitian rank 1 operation
*
* A := alpha*x*conjg( x' ) + A,
*
* where alpha is a real scalar, x is an n element vector and A is an
* n by n hermitian matrix.
*/
int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* a = reinterpret_cast<Scalar*>(pa);
RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*lda<std::max(1,*n)) info = 7;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HER ",&info,6);
if(alpha==RealScalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
// TODO perform direct calls to underlying implementation
// if(UPLO(*uplo)==LO) matrix(a,*n,*n,*lda).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha);
// else if(UPLO(*uplo)==UP) matrix(a,*n,*n,*lda).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha);
if(UPLO(*uplo)==LO)
for(int j=0;j<*n;++j)
matrix(a,*n,*n,*lda).col(j).tail(*n-j) += alpha * internal::conj(x_cpy[j]) * vector(x_cpy+j,*n-j);
else
for(int j=0;j<*n;++j)
matrix(a,*n,*n,*lda).col(j).head(j+1) += alpha * internal::conj(x_cpy[j]) * vector(x_cpy,j+1);
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
if(x_cpy!=x) delete[] x_cpy;
return 1;
}
/** ZHER2 performs the hermitian rank 2 operation
*
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an n
* by n hermitian matrix.
*/
int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*lda<std::max(1,*n)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
Scalar* y_cpy = get_compact_vector(y, *n, *incy);
// TODO perform direct calls to underlying implementation
if(UPLO(*uplo)==LO) matrix(a,*n,*n,*lda).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha);
else if(UPLO(*uplo)==UP) matrix(a,*n,*n,*lda).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha);
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}
/** ZGERU performs the rank 1 operation
*
* A := alpha*x*y' + A,
*
* where alpha is a scalar, x is an m element vector, y is an n element
* vector and A is an m by n matrix.
*/
int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(*m<0) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*lda<std::max(1,*m)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
// TODO perform direct calls to underlying implementation
matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).transpose();
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}
/** ZGERC performs the rank 1 operation
*
* A := alpha*x*conjg( y' ) + A,
*
* where alpha is a scalar, x is an m element vector, y is an n element
* vector and A is an m by n matrix.
*/
int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(*m<0) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*lda<std::max(1,*m)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
// TODO perform direct calls to underlying implementation
matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).adjoint();
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}

View File

@ -41,7 +41,7 @@ int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealSca
init = true;
}
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar* b = reinterpret_cast<Scalar*>(pb);
Scalar* c = reinterpret_cast<Scalar*>(pc);
@ -59,7 +59,7 @@ int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealSca
if(info)
return xerbla_(SCALAR_SUFFIX_UP"GEMV ",&info,6);
if(*m==0 || *n==0)
if(*m==0 || *n==0 || (alpha==Scalar(0) && beta==Scalar(1)))
return 0;
int actual_m = *m;
@ -69,10 +69,13 @@ int EIGEN_BLAS_FUNC(gemv)(char *opa, int *m, int *n, RealScalar *palpha, RealSca
Scalar* actual_b = get_compact_vector(b,actual_n,*incb);
Scalar* actual_c = get_compact_vector(c,actual_m,*incc);
if(beta!=Scalar(1))
vector(actual_c, actual_m) *= beta;
{
if(beta==Scalar(0)) vector(actual_c, actual_m).setZero();
else vector(actual_c, actual_m) *= beta;
}
int code = OP(*opa);
func[code](actual_m, actual_n, a, *lda, actual_b, 1, actual_c, 1, alpha);
@ -131,7 +134,7 @@ int EIGEN_BLAS_FUNC(trsv)(char *uplo, char *opa, char *diag, int *n, RealScalar
func[code](*n, a, *lda, actual_b);
if(actual_b!=b) delete[] copy_back(actual_b,b,*n,*incb);
return 0;
}
@ -195,149 +198,10 @@ int EIGEN_BLAS_FUNC(trmv)(char *uplo, char *opa, char *diag, int *n, RealScalar
copy_back(res.data(),b,*n,*incb);
if(actual_b!=b) delete[] actual_b;
return 0;
}
// y = alpha*A*x + beta*y
int EIGEN_BLAS_FUNC(symv) (char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
{
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
// check arguments
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*lda<std::max(1,*n)) info = 5;
else if(*incx==0) info = 7;
else if(*incy==0) info = 10;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"SYMV ",&info,6);
if(*n==0)
return 0;
Scalar* actual_x = get_compact_vector(x,*n,*incx);
Scalar* actual_y = get_compact_vector(y,*n,*incy);
if(beta!=Scalar(1))
vector(actual_y, *n) *= beta;
// TODO performs a direct call to the underlying implementation function
if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n));
else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n));
if(actual_x!=x) delete[] actual_x;
if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
return 1;
}
// C := alpha*x*x' + C
int EIGEN_BLAS_FUNC(syr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pc, int *ldc)
{
// typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar);
// static functype func[2];
// static bool init = false;
// if(!init)
// {
// for(int k=0; k<2; ++k)
// func[k] = 0;
//
// func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
// func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
// init = true;
// }
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* c = reinterpret_cast<Scalar*>(pc);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*ldc<std::max(1,*n)) info = 7;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"SYR ",&info,6);
if(alpha==Scalar(0))
return 1;
// if the increment is not 1, let's copy it to a temporary vector to enable vectorization
Scalar* x_cpy = get_compact_vector(x,*n,*incx);
// TODO perform direct calls to underlying implementation
if(UPLO(*uplo)==LO) matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha);
else if(UPLO(*uplo)==UP) matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha);
if(x_cpy!=x) delete[] x_cpy;
// func[code](*n, a, *inca, c, *ldc, alpha);
return 1;
}
// C := alpha*x*y' + alpha*y*x' + C
int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, int *ldc)
{
// typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
// static functype func[2];
//
// static bool init = false;
// if(!init)
// {
// for(int k=0; k<2; ++k)
// func[k] = 0;
//
// func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
// func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
//
// init = true;
// }
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* c = reinterpret_cast<Scalar*>(pc);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*ldc<std::max(1,*n)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"SYR2 ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x,*n,*incx);
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
// TODO perform direct calls to underlying implementation
if(UPLO(*uplo)==LO) matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha);
else if(UPLO(*uplo)==UP) matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha);
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
// int code = UPLO(*uplo);
// if(code>=2 || func[code]==0)
// return 0;
// func[code](*n, a, *inca, b, *incb, c, *ldc, alpha);
return 1;
}
/** DGBMV performs one of the matrix-vector operations
*
* y := alpha*A*x + beta*y, or y := alpha*A'*x + beta*y,
@ -345,23 +209,12 @@ int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px
* where alpha and beta are scalars, x and y are vectors and A is an
* m by n band matrix, with kl sub-diagonals and ku super-diagonals.
*/
int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *alpha, RealScalar *a, int *lda,
RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
{
return 1;
}
/** DSBMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n symmetric band matrix, with k super-diagonals.
*/
int EIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
{
return 1;
}
// int EIGEN_BLAS_FUNC(gbmv)(char *trans, int *m, int *n, int *kl, int *ku, RealScalar *alpha, RealScalar *a, int *lda,
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** DTBMV performs one of the matrix-vector operations
*
@ -370,10 +223,10 @@ int EIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealSc
* where x is an n element vector and A is an n by n unit, or non-unit,
* upper or lower triangular band matrix, with ( k + 1 ) diagonals.
*/
int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *trans, char *diag, int *n, int *k, RealScalar *a, int *lda, RealScalar *x, int *incx)
{
return 1;
}
// int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *trans, char *diag, int *n, int *k, RealScalar *a, int *lda, RealScalar *x, int *incx)
// {
// return 1;
// }
/** DTBSV solves one of the systems of equations
*
@ -386,23 +239,10 @@ int EIGEN_BLAS_FUNC(tbmv)(char *uplo, char *trans, char *diag, int *n, int *k, R
* No test for singularity or near-singularity is included in this
* routine. Such tests must be performed before calling this routine.
*/
int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *trans, char *diag, int *n, int *k, RealScalar *a, int *lda, RealScalar *x, int *incx)
{
return 1;
}
/** DSPMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n symmetric matrix, supplied in packed form.
*
*/
int EIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
{
return 1;
}
// int EIGEN_BLAS_FUNC(tbsv)(char *uplo, char *trans, char *diag, int *n, int *k, RealScalar *a, int *lda, RealScalar *x, int *incx)
// {
// return 1;
// }
/** DTPMV performs one of the matrix-vector operations
*
@ -411,10 +251,10 @@ int EIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap,
* where x is an n element vector and A is an n by n unit, or non-unit,
* upper or lower triangular matrix, supplied in packed form.
*/
int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
{
return 1;
}
// int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
// {
// return 1;
// }
/** DTPSV solves one of the systems of equations
*
@ -426,10 +266,10 @@ int EIGEN_BLAS_FUNC(tpmv)(char *uplo, char *trans, char *diag, int *n, RealScala
* No test for singularity or near-singularity is included in this
* routine. Such tests must be performed before calling this routine.
*/
int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
{
return 1;
}
// int EIGEN_BLAS_FUNC(tpsv)(char *uplo, char *trans, char *diag, int *n, RealScalar *ap, RealScalar *x, int *incx)
// {
// return 1;
// }
/** DGER performs the rank 1 operation
*
@ -444,7 +284,7 @@ int EIGEN_BLAS_FUNC(ger)(int *m, int *n, Scalar *palpha, Scalar *px, int *incx,
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(*m<0) info = 1;
else if(*n<0) info = 2;
@ -453,293 +293,20 @@ int EIGEN_BLAS_FUNC(ger)(int *m, int *n, Scalar *palpha, Scalar *px, int *incx,
else if(*lda<std::max(1,*m)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"GER ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
// TODO perform direct calls to underlying implementation
matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).adjoint();
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}
/** DSPR performs the symmetric rank 1 operation
*
* A := alpha*x*x' + A,
*
* where alpha is a real scalar, x is an n element vector and A is an
* n by n symmetric matrix, supplied in packed form.
*/
int EIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *alpha, Scalar *x, int *incx, Scalar *ap)
{
return 1;
}
/** DSPR2 performs the symmetric rank 2 operation
*
* A := alpha*x*y' + alpha*y*x' + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an
* n by n symmetric matrix, supplied in packed form.
*/
int EIGEN_BLAS_FUNC(spr2)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap)
{
return 1;
}
#if ISCOMPLEX
/** ZHEMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n hermitian matrix.
*/
int EIGEN_BLAS_FUNC(hemv)(char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
{
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
// check arguments
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*lda<std::max(1,*n)) info = 5;
else if(*incx==0) info = 7;
else if(*incy==0) info = 10;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HEMV ",&info,6);
if(*n==0)
return 1;
Scalar* actual_x = get_compact_vector(x,*n,*incx);
Scalar* actual_y = get_compact_vector(y,*n,*incy);
if(beta!=Scalar(1))
vector(actual_y, *n) *= beta;
if(alpha!=Scalar(0))
{
// TODO performs a direct call to the underlying implementation function
if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n));
else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n));
}
if(actual_x!=x) delete[] actual_x;
if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
return 1;
}
/** ZHBMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n hermitian band matrix, with k super-diagonals.
*/
int EIGEN_BLAS_FUNC(hbmv)(char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
{
return 1;
}
/** ZHPMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n hermitian matrix, supplied in packed form.
*/
int EIGEN_BLAS_FUNC(hpmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
{
return 1;
}
/** ZHPR performs the hermitian rank 1 operation
*
* A := alpha*x*conjg( x' ) + A,
*
* where alpha is a real scalar, x is an n element vector and A is an
* n by n hermitian matrix, supplied in packed form.
*/
int EIGEN_BLAS_FUNC(hpr)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *ap)
{
return 1;
}
/** ZHPR2 performs the hermitian rank 2 operation
*
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an
* n by n hermitian matrix, supplied in packed form.
*/
int EIGEN_BLAS_FUNC(hpr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap)
{
return 1;
}
/** ZHER performs the hermitian rank 1 operation
*
* A := alpha*x*conjg( x' ) + A,
*
* where alpha is a real scalar, x is an n element vector and A is an
* n by n hermitian matrix.
*/
int EIGEN_BLAS_FUNC(her)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pa, int *lda)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* a = reinterpret_cast<Scalar*>(pa);
RealScalar alpha = *reinterpret_cast<RealScalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*lda<std::max(1,*n)) info = 7;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HER ",&info,6);
if(alpha==RealScalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
// TODO perform direct calls to underlying implementation
if(UPLO(*uplo)==LO) matrix(a,*n,*n,*lda).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha);
else if(UPLO(*uplo)==UP) matrix(a,*n,*n,*lda).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha);
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
if(x_cpy!=x) delete[] x_cpy;
return 1;
}
/** ZHER2 performs the hermitian rank 2 operation
*
* A := alpha*x*conjg( y' ) + conjg( alpha )*y*conjg( x' ) + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an n
* by n hermitian matrix.
*/
int EIGEN_BLAS_FUNC(her2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*lda<std::max(1,*n)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HER2 ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x, *n, *incx);
Scalar* y_cpy = get_compact_vector(y, *n, *incy);
// TODO perform direct calls to underlying implementation
if(UPLO(*uplo)==LO) matrix(a,*n,*n,*lda).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha);
else if(UPLO(*uplo)==UP) matrix(a,*n,*n,*lda).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n),vector(y_cpy,*n),alpha);
matrix(a,*n,*n,*lda).diagonal().imag().setZero();
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}
/** ZGERU performs the rank 1 operation
*
* A := alpha*x*y' + A,
*
* where alpha is a scalar, x is an m element vector, y is an n element
* vector and A is an m by n matrix.
*/
int EIGEN_BLAS_FUNC(geru)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(*m<0) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*lda<std::max(1,*m)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"GERU ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
// TODO perform direct calls to underlying implementation
matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).transpose();
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}
/** ZGERC performs the rank 1 operation
*
* A := alpha*x*conjg( y' ) + A,
*
* where alpha is a scalar, x is an m element vector, y is an n element
* vector and A is an m by n matrix.
*/
int EIGEN_BLAS_FUNC(gerc)(int *m, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pa, int *lda)
{
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(*m<0) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*lda<std::max(1,*m)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"GERC ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x,*m,*incx);
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
// TODO perform direct calls to underlying implementation
matrix(a,*m,*n,*lda) += alpha * vector(x_cpy,*m) * vector(y_cpy,*n).adjoint();
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
return 1;
}
#endif // ISCOMPLEX

225
blas/level2_real_impl.h Normal file
View File

@ -0,0 +1,225 @@
// This file is part of Eigen, a lightweight C++ template library
// for linear algebra.
//
// Copyright (C) 2009-2010 Gael Guennebaud <gael.guennebaud@inria.fr>
//
// Eigen is free software; you can redistribute it and/or
// modify it under the terms of the GNU Lesser General Public
// License as published by the Free Software Foundation; either
// version 3 of the License, or (at your option) any later version.
//
// Alternatively, you can redistribute it and/or
// modify it under the terms of the GNU General Public License as
// published by the Free Software Foundation; either version 2 of
// the License, or (at your option) any later version.
//
// Eigen is distributed in the hope that it will be useful, but WITHOUT ANY
// WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
// FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License or the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU Lesser General Public
// License and a copy of the GNU General Public License along with
// Eigen. If not, see <http://www.gnu.org/licenses/>.
#include "common.h"
// y = alpha*A*x + beta*y
int EIGEN_BLAS_FUNC(symv) (char *uplo, int *n, RealScalar *palpha, RealScalar *pa, int *lda, RealScalar *px, int *incx, RealScalar *pbeta, RealScalar *py, int *incy)
{
Scalar* a = reinterpret_cast<Scalar*>(pa);
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
// check arguments
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*lda<std::max(1,*n)) info = 5;
else if(*incx==0) info = 7;
else if(*incy==0) info = 10;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"SYMV ",&info,6);
if(*n==0)
return 0;
Scalar* actual_x = get_compact_vector(x,*n,*incx);
Scalar* actual_y = get_compact_vector(y,*n,*incy);
if(beta!=Scalar(1))
{
if(beta==Scalar(0)) vector(actual_y, *n).setZero();
else vector(actual_y, *n) *= beta;
}
// TODO performs a direct call to the underlying implementation function
if(UPLO(*uplo)==UP) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Upper>() * (alpha * vector(actual_x,*n));
else if(UPLO(*uplo)==LO) vector(actual_y,*n).noalias() += matrix(a,*n,*n,*lda).selfadjointView<Lower>() * (alpha * vector(actual_x,*n));
if(actual_x!=x) delete[] actual_x;
if(actual_y!=y) delete[] copy_back(actual_y,y,*n,*incy);
return 1;
}
// C := alpha*x*x' + C
int EIGEN_BLAS_FUNC(syr)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *pc, int *ldc)
{
// typedef void (*functype)(int, const Scalar *, int, Scalar *, int, Scalar);
// static functype func[2];
// static bool init = false;
// if(!init)
// {
// for(int k=0; k<2; ++k)
// func[k] = 0;
//
// func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
// func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
// init = true;
// }
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* c = reinterpret_cast<Scalar*>(pc);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*ldc<std::max(1,*n)) info = 7;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"SYR ",&info,6);
if(*n==0 || alpha==Scalar(0)) return 1;
// if the increment is not 1, let's copy it to a temporary vector to enable vectorization
Scalar* x_cpy = get_compact_vector(x,*n,*incx);
Matrix<Scalar,Dynamic,Dynamic> m2(matrix(c,*n,*n,*ldc));
// TODO check why this is not accurate enough for lapack tests
// if(UPLO(*uplo)==LO) matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), alpha);
// else if(UPLO(*uplo)==UP) matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), alpha);
if(UPLO(*uplo)==LO)
for(int j=0;j<*n;++j)
matrix(c,*n,*n,*ldc).col(j).tail(*n-j) += alpha * x_cpy[j] * vector(x_cpy+j,*n-j);
else
for(int j=0;j<*n;++j)
matrix(c,*n,*n,*ldc).col(j).head(j+1) += alpha * x_cpy[j] * vector(x_cpy,j+1);
if(x_cpy!=x) delete[] x_cpy;
return 1;
}
// C := alpha*x*y' + alpha*y*x' + C
int EIGEN_BLAS_FUNC(syr2)(char *uplo, int *n, RealScalar *palpha, RealScalar *px, int *incx, RealScalar *py, int *incy, RealScalar *pc, int *ldc)
{
// typedef void (*functype)(int, const Scalar *, int, const Scalar *, int, Scalar *, int, Scalar);
// static functype func[2];
//
// static bool init = false;
// if(!init)
// {
// for(int k=0; k<2; ++k)
// func[k] = 0;
//
// func[UP] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,UpperTriangular>::run);
// func[LO] = (internal::selfadjoint_product<Scalar,ColMajor,ColMajor,false,LowerTriangular>::run);
//
// init = true;
// }
Scalar* x = reinterpret_cast<Scalar*>(px);
Scalar* y = reinterpret_cast<Scalar*>(py);
Scalar* c = reinterpret_cast<Scalar*>(pc);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(*n<0) info = 2;
else if(*incx==0) info = 5;
else if(*incy==0) info = 7;
else if(*ldc<std::max(1,*n)) info = 9;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"SYR2 ",&info,6);
if(alpha==Scalar(0))
return 1;
Scalar* x_cpy = get_compact_vector(x,*n,*incx);
Scalar* y_cpy = get_compact_vector(y,*n,*incy);
// TODO perform direct calls to underlying implementation
if(UPLO(*uplo)==LO) matrix(c,*n,*n,*ldc).selfadjointView<Lower>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha);
else if(UPLO(*uplo)==UP) matrix(c,*n,*n,*ldc).selfadjointView<Upper>().rankUpdate(vector(x_cpy,*n), vector(y_cpy,*n), alpha);
if(x_cpy!=x) delete[] x_cpy;
if(y_cpy!=y) delete[] y_cpy;
// int code = UPLO(*uplo);
// if(code>=2 || func[code]==0)
// return 0;
// func[code](*n, a, *inca, b, *incb, c, *ldc, alpha);
return 1;
}
/** DSBMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n symmetric band matrix, with k super-diagonals.
*/
// int EIGEN_BLAS_FUNC(sbmv)( char *uplo, int *n, int *k, RealScalar *alpha, RealScalar *a, int *lda,
// RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** DSPMV performs the matrix-vector operation
*
* y := alpha*A*x + beta*y,
*
* where alpha and beta are scalars, x and y are n element vectors and
* A is an n by n symmetric matrix, supplied in packed form.
*
*/
// int EIGEN_BLAS_FUNC(spmv)(char *uplo, int *n, RealScalar *alpha, RealScalar *ap, RealScalar *x, int *incx, RealScalar *beta, RealScalar *y, int *incy)
// {
// return 1;
// }
/** DSPR performs the symmetric rank 1 operation
*
* A := alpha*x*x' + A,
*
* where alpha is a real scalar, x is an n element vector and A is an
* n by n symmetric matrix, supplied in packed form.
*/
// int EIGEN_BLAS_FUNC(spr)(char *uplo, int *n, Scalar *alpha, Scalar *x, int *incx, Scalar *ap)
// {
// return 1;
// }
/** DSPR2 performs the symmetric rank 2 operation
*
* A := alpha*x*y' + alpha*y*x' + A,
*
* where alpha is a scalar, x and y are n element vectors and A is an
* n by n symmetric matrix, supplied in packed form.
*/
// int EIGEN_BLAS_FUNC(spr2)(char *uplo, int *n, RealScalar *alpha, RealScalar *x, int *incx, RealScalar *y, int *incy, RealScalar *ap)
// {
// return 1;
// }

View File

@ -52,7 +52,7 @@ int EIGEN_BLAS_FUNC(gemm)(char *opa, char *opb, int *m, int *n, int *k, RealScal
Scalar* c = reinterpret_cast<Scalar*>(pc);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
int info = 0;
if(OP(*opa)==INVALID) info = 1;
else if(OP(*opb)==INVALID) info = 2;
@ -342,13 +342,17 @@ int EIGEN_BLAS_FUNC(syrk)(char *uplo, char *op, int *n, int *k, RealScalar *palp
else if(*ldc<std::max(1,*n)) info = 10;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"SYRK ",&info,6);
int code = OP(*op) | (UPLO(*uplo) << 2);
if(beta!=Scalar(1))
{
if(UPLO(*uplo)==UP) matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta;
else matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta;
if(UPLO(*uplo)==UP)
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
else matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta;
else
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
else matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta;
}
#if ISCOMPLEX
@ -383,7 +387,7 @@ int EIGEN_BLAS_FUNC(syr2k)(char *uplo, char *op, int *n, int *k, RealScalar *pal
Scalar* c = reinterpret_cast<Scalar*>(pc);
Scalar alpha = *reinterpret_cast<Scalar*>(palpha);
Scalar beta = *reinterpret_cast<Scalar*>(pbeta);
int info = 0;
if(UPLO(*uplo)==INVALID) info = 1;
else if(OP(*op)==INVALID) info = 2;
@ -394,11 +398,15 @@ int EIGEN_BLAS_FUNC(syr2k)(char *uplo, char *op, int *n, int *k, RealScalar *pal
else if(*ldc<std::max(1,*n)) info = 12;
if(info)
return xerbla_(SCALAR_SUFFIX_UP"SYR2K",&info,6);
if(beta!=Scalar(1))
{
if(UPLO(*uplo)==UP) matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta;
else matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta;
if(UPLO(*uplo)==UP)
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
else matrix(c, *n, *n, *ldc).triangularView<Upper>() *= beta;
else
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
else matrix(c, *n, *n, *ldc).triangularView<Lower>() *= beta;
}
if(*k==0)
@ -458,11 +466,9 @@ int EIGEN_BLAS_FUNC(hemm)(char *side, char *uplo, int *m, int *n, RealScalar *pa
if(info)
return xerbla_(SCALAR_SUFFIX_UP"HEMM ",&info,6);
if(beta==Scalar(0))
matrix(c, *m, *n, *ldc).setZero();
else if(beta!=Scalar(1))
matrix(c, *m, *n, *ldc) *= beta;
if(beta==Scalar(0)) matrix(c, *m, *n, *ldc).setZero();
else if(beta!=Scalar(1)) matrix(c, *m, *n, *ldc) *= beta;
if(*m==0 || *n==0)
{
return 1;
@ -535,11 +541,18 @@ int EIGEN_BLAS_FUNC(herk)(char *uplo, char *op, int *n, int *k, RealScalar *palp
if(beta!=RealScalar(1))
{
if(UPLO(*uplo)==UP) matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta;
else matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta;
matrix(c, *n, *n, *ldc).diagonal().real() *= beta;
matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
if(UPLO(*uplo)==UP)
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
else matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta;
else
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
else matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta;
if(beta!=Scalar(0))
{
matrix(c, *n, *n, *ldc).diagonal().real() *= beta;
matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
}
}
if(*k>0 && alpha!=RealScalar(0))
@ -573,11 +586,18 @@ int EIGEN_BLAS_FUNC(her2k)(char *uplo, char *op, int *n, int *k, RealScalar *pal
if(beta!=RealScalar(1))
{
if(UPLO(*uplo)==UP) matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta;
else matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta;
if(UPLO(*uplo)==UP)
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Upper>().setZero();
else matrix(c, *n, *n, *ldc).triangularView<StrictlyUpper>() *= beta;
else
if(beta==Scalar(0)) matrix(c, *n, *n, *ldc).triangularView<Lower>().setZero();
else matrix(c, *n, *n, *ldc).triangularView<StrictlyLower>() *= beta;
matrix(c, *n, *n, *ldc).diagonal().real() *= beta;
matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
if(beta!=Scalar(0))
{
matrix(c, *n, *n, *ldc).diagonal().real() *= beta;
matrix(c, *n, *n, *ldc).diagonal().imag().setZero();
}
}
else if(*k>0 && alpha!=Scalar(0))
matrix(c, *n, *n, *ldc).diagonal().imag().setZero();

View File

@ -28,5 +28,7 @@
#define ISCOMPLEX 0
#include "level1_impl.h"
#include "level1_real_impl.h"
#include "level2_impl.h"
#include "level2_real_impl.h"
#include "level3_impl.h"